Remove ads
produit cartésien de deux ensemble X et Y : ensemble de tous les couples dont la première composante appartient à X et la seconde à Y De Wikipédia, l'encyclopédie libre
En mathématiques, le produit cartésien de deux ensembles X et Y, appelé également ensemble-produit, est l'ensemble de tous les couples dont la première composante appartient à X et la seconde à Y. On généralise facilement cette notion, valable pour deux ensembles, à celle de produit cartésien fini, qui est un ensemble de n-uplets dont les composantes appartiennent à n ensembles. La généralisation à un produit cartésien infini nécessite, quant à elle, la notion de fonction.
Les produits cartésiens doivent leur nom à René Descartes, qui, en créant la géométrie analytique, a le premier utilisé ce que nous appelons maintenant ℝ2 = ℝ × ℝ pour représenter le plan euclidien, et ℝ3 = ℝ × ℝ × ℝ pour représenter l'espace euclidien tri-dimensionnel (ℝ désigne la droite réelle).
Soit A l'ensemble { A, R, D, V, 10, 9, 8, 7, 6, 5, 4, 3, 2 }. Soit B l'ensemble { pique, cœur, carreau, trèfle }. Alors le produit cartésien A × B de ces deux ensembles est un jeu classique de 52 cartes, c'est-à-dire l'ensemble :
En théorie des ensembles, si on choisit, comme usuellement, la représentation des couples de Kuratowski, les couples dont la première composante est dans A et la seconde dans B sont des éléments de P[P(A∪B)] (où P(E) désigne l'ensemble des parties de E). L'existence de cet ensemble résulte de l'axiome de la réunion et de l'axiome de l'ensemble des parties.
On peut par conséquent définir le produit cartésien par compréhension. On aura alors besoin des couples et donc, en plus des axiomes précédents, dans Z de l'axiome de la paire et du schéma d'axiomes de compréhension ou dans ZF de l'ensemble des parties à nouveau et du schéma d'axiomes de remplacement (dont conjointement se déduit l'existence de paires) :
On peut même se passer de l'ensemble des parties en utilisant deux fois le schéma d'axiomes de remplacement[1] : une fois pour A × {b} et une autre fois pour :
Se donner une application d'un ensemble dans le produit cartésien de deux ensembles et revient à se donner deux applications : l'une de dans et l'autre de dans . Plus formellement : l'ensemble , muni des deux projections et , est caractérisé à un isomorphisme canonique près[2],[3] par la propriété universelle suivante : pour tout ensemble et toutes applications et , il existe une unique application telle que et [4]. On résume cette propriété universelle en disant que est le produit de et dans la catégorie des ensembles.
La théorie des catégories définit ainsi de façon systématique des produits plus généraux, soit prenant en compte des structures supplémentaires (groupes produits, espaces topologiques produits), soit rajoutant des contraintes (produit d'une famille d'ensembles, produit fibré, etc.).
De façon analogue aux couples la propriété visée est que deux triplets sont égaux si et seulement si leurs premières composantes sont égales entre elles, puis leurs deuxièmes composantes, et enfin leurs troisièmes :
Plusieurs définitions sont possibles pour le triplet (a,b,c), par exemple :
Ces définitions ne sont pas équivalentes mais donnent toutes la propriété précédente.
Il est défini par :
(avec la première définition proposée au paragraphe précédent, A × B × C = (A × B) × C, avec la seconde A × B × C = A × (B × C), la troisième est un cas particulier de celle donnée au paragraphe #Produit cartésien d'une famille d'ensembles).
Le produit A × A × A est appelé cube cartésien de A et il est noté A3 (lire « A au cube ») :
Les définitions précédentes se généralisent à un n-uplet quelconque. La propriété visée pour ceux-ci est la suivante.
Propriété fondamentale d'un n-uplet :
- .
Les deux premières définitions se généralisent par récurrence[6], par exemple pour la première :
Pour la dernière il suffit de disposer d'un famille indexée par un ensemble à n éléments.
Le produit cartésien de n ensembles est alors défini par :
et donc la puissance cartésienne n-ième d'un ensemble par :
On peut généraliser la notion de produit cartésien à celle de produit d'une famille d'ensembles indexée par un ensemble quelconque, fini ou infini.
Bien que plus générale, cette notion peut difficilement être introduite en théorie des ensembles avant celle de produit cartésien binaire, du moins naturellement, car elle fait appel à la notion de fonction, qui utilise la notion de produit cartésien binaire[8].
Une famille A d'ensembles indexée par un ensemble I est une fonction définie sur I. L'image de i par A est notée Ai. Il s'agit juste d'une notation (adaptée à un certain usage) pour une construction connue. La famille A indexée par I sera plutôt notée (Ai)i∈I.
On peut maintenant définir le produit cartésien d'une famille d'ensembles (Ai)i∈I, que l'on note habituellement , ou parfois .
Il s'agit de l'ensemble des fonctions f de I dans la réunion de la famille, telles que pour tout i dans I, f(i) appartienne à Ai :
Soient A et B deux ensembles. Pour toute paire I = {α, β} (par exemple α = ∅ et β = {∅}), on a une bijection canonique entre le produit A×B des deux ensembles et le produit de la famille (Ai)i∈I définie par Aα = A et Aβ = B, en associant à tout couple (x, y) de A×B l'élément f défini par f(α) = x et f(β) = y[9].
Soient (Ai)i∈I une famille d'ensembles et (Jk)k∈K une partition de I[10]. L'application canonique
est bijective[11].
Par récurrence, le produit de n ensembles s'identifie ainsi au produit d'une famille indexée par {1, 2, … , n}.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.