Remove ads
De Wikipédia, l'encyclopédie libre
En mathématiques, une application est dite propre si elle vérifie une certaine propriété topologique. La définition la plus courante, valable pour une application continue d'un espace séparé dans un espace localement compact, est que l'application est propre si l'image réciproque de toute partie compacte de l'espace d'arrivée est compacte[1]. Cette définition est équivalente, dans ce contexte, à la définition générale : une application (non nécessairement continue et entre espaces topologiques quelconques) est propre si elle est « universellement fermée ».
Soient X et Y deux espaces topologiques. Une application f : X → Y est dite propre[2] si pour tout espace topologique Z, l'application f × idZ : X × Z → Y × Z est fermée.
Théorème — Si X est séparé et Y localement compact et si f : X → Y est continue, alors les propriétés suivantes sont équivalentes :
Plus précisément[2] :
Lorsque X et Y sont tous deux localement compacts, en considérant leurs compactifiés d'Alexandrov, la condition 3 se reformule en : quand x tend vers l'infini, f(x) tend vers l'infini.
La notion d'application propre jouit des propriétés suivantes[2] :
Pour tout groupe topologique G agissant continûment et proprement sur un espace topologique X, le quotient X/G est séparé[3].
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.