Il soutient son doctorat en 1967 à l'université d'Oxford avec une thèse intitulée The theory of conditional invariance sous la direction de Charles Coulson[2].
Cette section est vide, insuffisamment détaillée ou incomplète. Votre aide est la bienvenue! Comment faire?
Cette section est vide, insuffisamment détaillée ou incomplète. Votre aide est la bienvenue! Comment faire?
En 1988, il reçoit le prix Servant[3]«pour ses travaux sur les idéaux primitifs des algèbres enveloppantes d'algèbres de Lie semi-simples».
Quantum groups and their primitive ideals, Springer, Berlin 1995[4].
avec V. Hinich: Orbital variety closures and the convolution product in Borel-Moore homology. Selecta Math. 11(2005) p. 9-36.
avec F. Fauquant-Millet: Semi-centre de l'algèbre enveloppante d'une sous-algèbre parabolique d'une algèbre de Lie semi-simple. Ann. Ec. Norm. Sup.
A. Joseph, Proof of the Gelfand-Kirillov conjecture for solvable Lie algebras, Proc. Amer. Math. Soc. 45 (1974) p. 1-10.
A. Joseph, A generalization of the Gelfand-Kirillov conjecture. Amer. J. of Math., Vol. 99 (1977), No. 6, p. 1151-1165.
A. Joseph, Second commutant theorems in enveloping algebras. Amer. J. of Math., Vol. 99 (1977), No. 6, p. 1167-1192.
A. Joseph, A preparation theorem for the prime spectrum of a semisimple Lie algebra. J. of Algebra, 48 (1977), p. 241-289.
A. Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge. Band 29, A Series of Modern Surveys in Mathematics, Springer-Verlag (1995).
A. Joseph, On semi-invariants and index for biparabolic (seaweed) algebras, I. J. of Algebra, 305 (2006), p. 487-515.
A. Joseph, On semi-invariants and index for biparabolic (seaweed) algebras, II. J. of Algebra, 312 (2007), p. 158-193.
A. Joseph, Parabolic actions in type A and their eigenslices. Transformation Groups, Vol. 12 , No. 3 (2007), p. 515-547.
A. Joseph, A slice theorem for truncated parabolics of index one and the Bezout equation. Bull. Sci. Math. 131 (2007), No. 3, p. 276-290.
A. Joseph, Compatible adapted pairs and a common slice theorem for some centralizers. Transformation Groups, Vol. 13 (2008), Nos. 3-4, p. 637-669.
A. Joseph, Slices for biparabolic coadjoint actions in type A. J. of Algebra 319 (2008), No. 12, p. 5060-5100.
A. Joseph, An algebraic slice in the coadjoint space of the Borel and the Coxeter element. Advances in Mathematics, 227 (2011), p. 522-585.
A. Joseph, Some remarks on Weierstrass sections, adapted pairs and polynomiality. V. Dobrev (ed.) Lie Theory and its applications in physics: IXth International workshop, Springer Proceedings in Mathematics and Statistics 36, DOI 10.1007/978-4-431-54270-4-4, Springer Japan 2013.
A. Joseph, The hidden semi-invariants generators of a quasi-Frobenius biparabolic.
A. Joseph et P. Lamprou, Maximal Poisson commutative subalgebras for truncated parabolic subalgebras of maximal index in sl n. Transform. Groups 12 (3) (2007), p. 549-571.
A. Joseph et D. Shafrir, Polynomiality of invariants, unimodularity ad adapted pairs. Transform. Groups 15 (2010), No. 4, p. 851-882[5].
Studies in Lie Theory: Dedicated to A. Joseph on His Sixtieth Birthday, par Anthony Joseph, Joseph Bernstein, Vladimir Hinich, Anna Melnikov. Progress in Mathematics, Birkhäuser[6]