Loading AI tools
De Wikipédia, l'encyclopédie libre
En mathématiques, le théorème de factorisation est un principe général qui permet de construire un morphisme d'une structure quotient dans un autre espace à partir d'un morphisme de vers , de façon à factoriser ce dernier par la surjection canonique de passage au quotient.
Soit un ensemble muni d'une relation d'équivalence et la surjection canonique.
Théorème — Soit une application telle que (pour toute paire d'éléments x, x' dans X)
Alors, il existe une unique application
De plus :
(La réciproque est moins utile mais immédiate : pour toute application g : X/R → Y, la composée f = g∘s vérifie x R x' ⇒ f(x) = f(x').)
Ce théorème peut se spécialiser à un certain nombre de structures algébriques ou topologiques.
Sur un groupe , on considère la relation d'équivalence définie par un sous-groupe normal de : si . Alors, la surjection canonique est un morphisme de groupes et le théorème de factorisation s'énonce
Théorème — Soit un morphisme de groupes. Si est contenu dans le noyau de , alors il existe un unique morphisme de groupes tel que . De plus :
On considère un espace vectoriel et la relation d'équivalence définie par un sous-espace vectoriel : si . Alors, la surjection canonique est linéaire.
Théorème — Soit une application linéaire. Si est contenu dans le noyau de , alors il existe une unique application linéaire telle que . De plus :
On considère un anneau et la relation d'équivalence définie par un idéal bilatère de : si . Alors, la surjection canonique est un morphisme d'anneaux.
Théorème — Soit un morphisme d'anneaux. Si est contenu dans le noyau de , alors il existe un unique morphisme d'anneaux tel que . De plus :
Soit un espace topologique muni d'une relation d'équivalence et la surjection canonique. On munit de la topologie quotient. Soit une application continue.
Théorème — Si pour tout couple dans , on a , alors il existe une unique application continue telle que . De plus :
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.