Top Qs
Chronologie
Chat
Contexte

Théorème de Cayley

théorème de théorie des groupes De Wikipédia, l'encyclopédie libre

Remove ads

En théorie des groupes, le théorème de Cayley est un résultat élémentaire[1] établissant que tout groupe se réalise comme groupe de permutations, c'est-à-dire comme sous-groupe d'un groupe symétrique :

Tout groupe G est isomorphe à un sous-groupe du groupe symétrique S(G) des permutations de G. En particulier, si G est un groupe fini d'ordre n, il est isomorphe à un sous-groupe de Sn.

Remove ads

Remarques

  • Si G est d'ordre n, le groupe Sn dans lequel il est plongé est d'ordre n!.
  • Le théorème se reformule en disant que tout groupe agit fidèlement sur lui-même. L'action que l'on construit est en fait même simplement transitive.

Utilisations

Remove ads

Historique

Le théorème est habituellement attribué à Arthur Cayley et daté de 1854[2]. Cependant il est parfois aussi attribué à Camille Jordan[3], qui l'a formulé et prouvé plus explicitement dans un traité en 1870[4],[5] : les permutations tg sont « régulières », c'est-à-dire que pour g ≠ e, tg est sans point fixe et les cycles disjoints dont elle est produit sont tous de même longueur.

Notes et références

Loading content...

Article connexe

Loading content...
Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads