Loading AI tools
quadrilatère avec trois angles droits De Wikipédia, l'encyclopédie libre
En géométrie, un quadrilatère de Lambert, du nom de Jean-Henri Lambert, est un quadrilatère ayant trois angles droits. Historiquement, Lambert espérait pouvoir démontrer (à l'aide des axiomes d'Euclide à l'exception de l'axiome des parallèles) qu'un tel quadrilatère était un rectangle (démontrant ainsi l'axiome des parallèles), mais il semble s'être convaincu que la chose était impossible, obtenant ainsi les premiers résultats de géométrie hyperbolique, et en particulier la formule donnant l'aire d'un triangle en fonction de ses trois angles.
Le quatrième angle d'un quadrilatère de Lambert caractérise la géométrie : s'il est droit, on est en géométrie euclidienne, s'il est aigu, on est en géométrie hyperbolique, et s'il est obtus (ce qui est impossible en géométrie absolue), on est en géométrie elliptique ; dans tous les cas, ce qui est vrai d'un quadrilatère de Lambert l'est pour tous.
En géométrie hyperbolique, soit AOBF un quadrilatère de Lambert, dont les trois angles et sont droits, et où F est opposé à O. est alors un angle aigu, et en prenant la courbure du plan hyperbolique K = -1, on a les relations suivantes[1] :
et également
(où sont les fonctions hyperboliques).
Le quatrième angle vaut 60°. |
Le quatrième angle vaut 45°. |
Quadrilatère idéal, le quatrième sommet étant à l'infini. |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.