matematiikka From Wikipedia, the free encyclopedia
Matematiikassa imaginaariyksikkö mahdollistaa reaalilukujen laajentamisen kompleksilukujen joukkoon. Sen täsmällinen määritelmä riippuu tavasta, jolla laajennus tehdään. Imaginaariyksikköä merkitään , missä siis .[1] Toisinaan imaginaariyksiköstä käytetään merkintää j ja ι.
Perussyy tähän laajennukseen on, että kaikilla polynomiyhtälöillä ei ole ratkaisua reaalilukujen joukossa. Erityisesti yhtälö on tällainen. Ajattelemalla, että kyseisellä yhtälöllä olisikin ratkaisuna imaginaariyksikkö i ja määrittelemällä i:n laskutoimitukset sopivasti, saadaankin jokaiselle reaalikertoimiselle polynomiyhtälölle f(x)=0 ratkaisu. (Katso algebrallinen sulkeuma ja algebran peruslause).
Imaginaariyksikkö on myös osa Eulerin lausetta funktioteoriassa.
Määritelmän mukaan i on eräs toisen asteen yhtälön
ratkaisuista, jotka ovat
Reaalilukujen laskusäännöt voidaan laajentaa imaginaarisille ja kompleksisille luvuille ajattelemalla lukua i muuttujana, kertomalla lukuja kuten polynomeja ja ottamalla huomioon, että i2=−1. Korkeammista eksponenteista imaginaariyksikön eksponentti voidaan palauttaa välille 0,...,3 kaavan in=-in-2 avulla.
Imaginaariyksikön käänteisluku on sama kuin sen vastaluku, koska
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.