تغییرات کوچک در شرایط اولیه، مانند تغییرات در اثر گرد کردن اعداد در محاسبات، میتواند باعث واگرایی گسترده خروجیهای چنین سامانههایی شده، بهگونهای که پیشبینی بلندمدت رفتارشان را در حالت کلی، غیرممکن میسازد.[6] بااینکه اینگونه سامانهها قطعی هستند، ممکن است چنین شود. قطعی بودن به این معناست که رفتار آیندهشان از سیر تکاملی منحصربهفردی پیروی کرده،[7] کاملاً وابسته به شرایط اولیه بوده، و هیچ اثری از رفتار تصادفی در آن دیدهنمیشود.[8] به بیانی دیگر، ماهیت قطعی این سامانهها، باعث پیشبینیپذیریشان نمیشود.[9][10] به این رفتار، آشوب قطعی یا تنها، آشوب میگویند. این نظریه را ادوارد لورنتس اینگونه خلاصه کرد:[11]
آشوب، هنگامیست که حال، آینده را تعیین میکند، اما حالِ تقریبی نتواند آینده را تقریبی تعیین کند.
نخستین بار، یک هواشناس بهنام ادوارد لورنتس به مسئله آشوبناکی برخورد. ۱۹۶۰، او روی پیشبینی آبوهوا کار میکرد و روی کامپیوترش ۱۲ معادله برای آن در نظر گرفتهبود. این معادلهها، آبوهوا را پیشبینی نمیکرد، ولی، نظری، پیشبینی میکرد که هوا چگونه میتواند باشد. او میخواست دوباره به دنبالهٔ مشخصی برسد. برای صرفهجویی در وقت، او بهجای آغاز از اول دنباله، از وسط آن شروع کرد. عددی را که از بار پیش، از دنباله در دست داشت، وارد سیستم کرد، و کامپیوتر را به حال خود گذاشت تا پردازش کند. یک ساعت بعد که برگشت، دنباله، متفاوت از بار پیش، ادامه یافتهبود. برخلاف بار پیش، دنباله جدید واگرا میشد و نسبت به دنباله اول، کاملاً بههمریخته مینمود. لورنتس، سرانجام دریافت که مشکل کار کجاست. کامپیوتر، تا ۶ رقم اعشار را ذخیره میکرد و او برای اینکه کاغذ کمتری مصرف کند، فقط ۳ رقم اعشار را برای خروجی در نظر گرفتهبود. در الگوی اولیه، عدد بهدستآمده در اصل، ۵۰۶۱۲۷/۰ بود، ولی او برای بار بعد، فقط ۵۰۶/۰ را وارد کردهبود. براساس دانش آن زمان، این دنباله میبایست شبیه یا بسیار نزدیک به دنباله اولیه میشد. او انتظار داشت، رقمهای پنجم و ششم مهم نباشند و اثر چندانی روی خروجی نگذارند. اما چنین نبود. لورنز اما آن را نپذیرفت.
این پدیده، بهعنوان اثر پروانهای شناخته شد. در واقع، تفاوت دو مقدار اولیه آنقدر ناچیز است، که انتظار میرود به اندازه اثر بال زدن یک پروانه روی وضعیت جوی باشد. مانند اینکه در یک دوره آبوهوایی، گردبادی که قرار بود سواحل اندونزی را درنوردد، هیچگاه اتفاق نمیافتد. این پدیده، حساسیت زیاد به شرایط اولیه را نشان میدهد.
پژوهشهای متخصصان در مطالعات هواشناسی ادامه یافت تااینکه ۱۹۹۱، جیمز یورک، نظریه آشوب را به مفهوم «نظم در بینظمی» پیش نهاد. او استاد ریاضی و فیزیک در دانشگاه مریلند و به پدر آشوب مشهور است.
«آشوب» بهمعنای «نوعی بینظمی» است.[19][20] البته در نظریه آشوب، این اصطلاح تعریف دقیقتری دارد. گرچه آشوب، تعریف ریاضی همگانی ندارد، تعریف رایج را رابرت دِوانی پیش نهاد، که چنین است: یک سامانه دینامیکی، آشوبناک است اگر یکی از سه ویژگی را دارا باشد:[21]
نشان دادهشده که در برخی موارد، در واقع دو ویژگی ۲ و ۳ هستند که موجب حساسیت به شرایط اولیه میشوند.[22][23] در مسائل زمانگسسته، این برای تمام نگاشتهای پیوسته روی فضاهای متریک صدق میکند.[24] در چنین مواردی، با این که خاصیت «حساسیت نسبت شرایط اولیه» اغلب در عمل مهم است، ولی لازم نیست در تعریف آشوبناکی قید شود.
اگر تنها بازهها در نظر گرفتهشوند، خاصیت دوم، دو خاصیت دیگر را نتیجه میدهد.[25] تعریف کلیتر اما ضعیفتری از آشوب، تنها دو خاصیت اول را دربرمیگیرد.[26]
Bishop, Robert (2017), "Chaos", in Zalta, Edward N. (ed.), The Stanford Encyclopedia of Philosophy (Spring 2017ed.), Metaphysics Research Lab, Stanford University, retrieved 2019-11-24
Hasselblatt, Boris; Anatole Katok (2003). A First Course in Dynamics: With a Panorama of Recent Developments. Cambridge University Press. ISBN978-0-521-58750-1.
Alemansour, Hamed; Miandoab, Ehsan Maani; Pishkenari, Hossein Nejat (March 2017). "Effect of size on the chaotic behavior of nano resonators". Communications in Nonlinear Science and Numerical Simulation. 44: 495–505. Bibcode:2017CNSNS..44..495A. doi:10.1016/j.cnsns.2016.09.010.
Crutchfield; Tucker; Morrison; J.D. Farmer; Packard; N.H.; Shaw; R.S (December 1986). "Chaos". Scientific American. 255 (6): 38–49 (bibliography p.136). Bibcode:1986SciAm.255d..38T. doi:10.1038/scientificamerican1286-46. Online version (Note: the volume and page citation cited for the online text differ from that cited here. The citation here is from a photocopy, which is consistent with other citations found online that don't provide article views. The online content is identical to the hardcopy text. Citation variations are related to country of publication).
John Briggs and David Peat, Turbulent Mirror:: An Illustrated Guide to Chaos Theory and the Science of Wholeness, Harper Perennial 1990, 224 pp.
John Briggs and David Peat, Seven Life Lessons of Chaos: Spiritual Wisdom from the Science of Change, Harper Perennial 2000, 224 pp.
Cunningham, Lawrence A. (1994). "From Random Walks to Chaotic Crashes: The Linear Genealogy of the Efficient Capital Market Hypothesis". George Washington Law Review. 62: 546.
Predrag Cvitanović, Universality in Chaos, Adam Hilger 1989, 648 pp.
Leon Glass and Michael C. Mackey, From Clocks to Chaos: The Rhythms of Life, Princeton University Press 1988, 272 pp.
James Gleick, Chaos: Making a New Science, New York: Penguin, 1988. 368 pp.
John Gribbin (2005-01-27). Deep Simplicity. Penguin Press Science. Penguin Books.
L Douglas Kiel, Euel W Elliott (ed.), Chaos Theory in the Social Sciences: Foundations and Applications, University of Michigan Press, 1997, 360 pp.
Arvind Kumar, Chaos, Fractals and Self-Organisation; New Perspectives on Complexity in Nature , National Book Trust, 2003.
Hans Lauwerier, Fractals, Princeton University Press, 1991.
Edward Lorenz, The Essence of Chaos, University of Washington Press, 1996.
The chaos theory of evolution – article published in Newscientist featuring similarities of evolution and non-linear systems including fractal nature of life and chaos.
Jos Leys, Étienne Ghys et Aurélien Alvarez, Chaos, A Mathematical Adventure. Nine films about dynamical systems, the butterfly effect and chaos theory, intended for a wide audience.
"Chaos Theory", BBC Radio 4 discussion with Susan Greenfield, David Papineau & Neil Johnson (In Our Time, ۱۶ مه ۲۰۰۲)
Wikiwand in your browser!
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.