بالاترین سوالات
زمانبندی
چت
دیدگاه
قطاع
از ویکیپدیا، دانشنامه آزاد
Remove ads
قطاع دایره یا قطاع بخشی از یک قرص یا دایرهاست که به دو شعاع و یک کمان محدود شدهاست. θ زاویهٔ مرکزی روبروی کمان، شعاع دایره و طول کمان است.

یک قطاع با زاویهٔ ۱۸۰ درجه را نیمدایره و با زاویهٔ ۹۰ درجه را ربع دایره مینامند. اگر دو انتهای کمان را به هر نقطهای غیر از مرکز دایره وصل کنیم، بخش پدید آمده قطاع نخواهد بود؛ و زاویهٔ ساخته شده در آن هم زاویهٔ مرکزی نخواهد بود.
Remove ads
مساحت
خلاصه
دیدگاه
مساحت سراسر دایره برابر است پس مساحت یک قطاع برابر است با حاصل ضرب نسبت زاویهای که دربر دارد به زاویهٔ کل دایره (۳۶۰ درجه) در مساحت کل دایره. اگر زاویهٔ θ به رادیان باشد، مساحت قطاع خواهد بود:
و اگر θ به درجه باشد:
روش دیگر آن است که مساحت این قطاع را از راه انتگرال زیر بدست آوریم:
Remove ads
پیرامون
پیرامون یک قطاع برابر است با مجموع طول کمان آن و دو شعاع دایره:
که در اینجا θ به رادیان است.
Remove ads
جستارهای وابسته
منابع
پیوند به بیرون
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads