قطاع

از ویکی‌پدیا، دانشنامه آزاد

قطاع

قطاع دایره یا قطاع بخشی از یک قرص یا دایره‌است که به دو شعاع و یک کمان محدود شده‌است. θ زاویهٔ مرکزی روبروی کمان، شعاع دایره و طول کمان است.

Thumb
یک قطاع از دایره به رنگ سبز

یک قطاع با زاویهٔ ۱۸۰ درجه را نیم‌دایره و با زاویهٔ ۹۰ درجه را ربع دایره می‌نامند. اگر دو انتهای کمان را به هر نقطه‌ای غیر از مرکز دایره وصل کنیم، بخش پدید آمده قطاع نخواهد بود؛ و زاویهٔ ساخته شده در آن هم زاویهٔ مرکزی نخواهد بود.

مساحت

خلاصه
دیدگاه

مساحت سراسر دایره برابر است پس مساحت یک قطاع برابر است با حاصل ضرب نسبت زاویه‌ای که دربر دارد به زاویهٔ کل دایره (۳۶۰ درجه) در مساحت کل دایره. اگر زاویهٔ θ به رادیان باشد، مساحت قطاع خواهد بود:

و اگر θ به درجه باشد:

روش دیگر آن است که مساحت این قطاع را از راه انتگرال زیر بدست آوریم:

پیرامون

پیرامون یک قطاع برابر است با مجموع طول کمان آن و دو شعاع دایره:

که در اینجا θ به رادیان است.

جستارهای وابسته

منابع

پیوند به بیرون

Wikiwand - on

Seamless Wikipedia browsing. On steroids.