Remove ads
From Wikipedia, the free encyclopedia
Mekanika newtondarrean, indar zentrifugoa inertzia-indar bat da (indar irudikariak, indar fiktizio edo sasi-indar terminoak ere erabiltzen dira), biraka ari den erreferentzia-sistema ez-inertzial batetik Newtonen legeak aplikatzen direnean kontuan hartu beharrekoa, gorputzen higiduraren dinamika aztertzeko. Erreferentzia-sistema inertzial batetik, ordea, ez da indar zentrifugoa kontuan hartu behar. Horregatik esaten da “indar irudikari”, “indar fiktizioa” edo “sasi-indarra” dela; nolanahi ere, sistema ez-inertzialean efektu errealak ditu.
Indar zentrifugoaren norabidea erreferentzia-sistemari dagokion biraketa-ardatzarekiko perpendikularra da, eta kanporanzko noranzko erradiala du. Hortik datorkio "zentrifugo" izendapena: latineko centrifugus terminotik, hau da, “zentrotik ihes egiteko” noranzkoa duena. Izan ere, ardatz bertikal baten inguruan biraka ari den plataforma batean (zaldiko-maldiko batean, adibidez) geldi dagoen behatzaileak indar zentrifugoaren eragina sentitzen du, erradialki kanporantz bultzatzen duena, biraketa-zentroranzko indar zentripetua egin ezean.
Indar zentrifugoaren kontzeptuak aplikazio praktiko asko ditu, hainbat motatako tresnatan, (indar zentrifugoan oinarritzen dira zentrifugagailuak, ponpa zentrifugatzaileak, erregulagailu zentrifugoak eta enbrage zentrifugoak, besteak beste), eta funtsezko garrantzia du zenbait higiduratan, hala nola planeten orbitetan, edo ibilgailuetan goazenean bihurguneetan sentitzen dugun kanporanzko indarrean edota errepideetako peraltedun bihurguneetan.
Eskuineko argazkian Parisko inguruetan 1903an zirko batean eskainitako ikuskizunean bi ziklista ari dira biraka hezitzaileak xaxaturiko lehoien kaiolaren gainean, higidura zirkularrean duten indar zentrifugoari esker behera erortzeko “benetako” arriskurik gabe. Ikuskizunari “heriotza bikoitzeko zirkulua” deitu zioten.
Christian Huygens-ek (1629-1695) erabili zuen lehen aldiz indar zentrifugo terminoa 1659an: vis centrifuga deitu zion bere testuan. Beraz, Isaac Newton-ek (1642-1727) dinamikaren legeak eman aurretik eta indarren kontzeptua ongi argitu baino lehenago aipatu zuen Huygensek; dena den, 1659an berak idatzitako testua ez zen argitaratu 1703. urtera arte, hil ostean hamarkada bat pasatu arte.
Terminoa izendatu ondoren, indar zentrifugoari buruzko zenbait proposamen argitaratu zituen 1673an Horologium oscillatorium izeneko liburuan. Bertan, abiapuntu modura hartu zuen Galileo-ren garaitik ezaguna zen ideia bat, zeinaren arabera erorketa librean jausten ziren gorputzek higidura uniformeki azeleratua zuten. Huygensek proposatu zuen ezen hari batetik zintzilikatutako gorputzaren pisuak harian sortutako tentsioak eta, bestetik, hari beraren muturrean zirkularki biraka dabilen masak sortutako tentsioak(indar zentrifugoaren kausaz), biek eragin berbera zutela; indarrak, alegia. Konparazio horretatik zenbait ondorio garrantzitsu atera zituen higidura zirkularreko indar zentrifugoari buruz, bereziki hiru proposamen hauek:
Gaur egungo notazioa erabiliz, badakigu indar zentrifugoaren modulua dela; bestalde, altueratik libreki erotzean lortzen den abiadura da. Formula horretan (diametroaren laurdena) ordezkatuz, hauxe litzateke Huygensek proposaturiko indar zentrifugoaren balioa:
Harrigarria benetan! Huygensek zehazki kalkulatu zuen indar zentrifugoaren balioa, Newtonek bere legeak eman baino lehen.
Bestalde, indar zentrifugoari (eta inertzia-indarrei, oro har) “indar fiktizio” edo "irudikari" deitzea Coriolisen lanetan agertu zen lehen aldiz 1844an.
Erreferentzia-sistema ez-inertzialetan Newtonen bigarren legea aplikatzean, kontuan izan behar dira sistema inertzialetan ageri ez diren indar berezi batzuk, inertzia-indarrak deritzenak, sistema ez-inertzialaren azelerazio linealei eta biraketari dagozkionak. Horietako bat da indar zentrifugoa.
Indar zentrifugoa biraka ari diren erreferentzia-sistema ez-inertzialetan agertzen da soilik; hain zuzen, biraketaren ondorioz, objektu guztiek jasaten dute, eta indarraren balioa biraketa-ardatzarekiko distantziaren araberakoa da. Preseski, biraka ari den erreferentzia-sistema ez-inertzial batean posizio-bektorea duen masa puntualari dagokion indar zentrifugoa honelaxe adierazten da bektorialki idatzita:
non sistema ez-inertzialaren abiadura angeluarra den.
Kasu honetan abiadura angeluarra eta biraketa-erradioa, biak ala biak, konstanteak dira, eta indar zentrifugoaren modulua honako hau da:
Beraz, indar zentrifugoa abiadura angeluarraren karratuaren proportzionala eta biraketa-erradioaren proportzionala da. Bestalde, bektorialki kontsideraturik, norabide erradiala du eta biraketa-zentroranzko aurkako noranzkoa. Hortaz, honelaxe adierazten da indar zentrifugo bektorea:
bertan hori erradioaren norabideko bektore unitarioa izanik; bektore unitario hau biraketa-ardatzaren perpendikularra da, eta kanporanzkoa.
Dena den, objektuaren higidura sistema inertzial batean aztertzean, higidura zirkular uniformea du, eta haren abiadura lineala eran adieraz daiteke, abiadura angeluarraren funtzioan. Hortaz, abiadura lineal horren funtzioan, honelaxe adieraziko litzateke indar zentrifugoaren modulua:
Hau da, indar zentrifugoaren balioa sistema inertzialeko higidura zirkular uniformeari dagokion abiadura linealaren karratuaren proportzionala da eta biraketa-erradioaren alderantziz proportzionala.
Indar zentrifugoa eta indar zentripetua bi kontzeptu erabat desberdin dira; halere, sarri nahastu egiten dira. Horregatik, oso garrantzizkoa da biak ondo bereiztea eta bien arteko desberdintasuna zein den argitzea.[1][2]
Berezitasun eta desberdintasun horiek alboko irudi eskematikoan daude azaldurik. Irudi horretan, abiadura angeluar konstantez biraka ari den plataforma horizontal batean geldi dagoen gorputz baten azterketa dinamikoa egiten da bi erreferentzia-sistematatik. Gorputza marruskadurarik gabe dago platafoma gainean, geldi, biraketa-ardatzari soka batez lotuta, biraketaren ondorioz kanporantz irten ez dadin, plataformako puntu finkoan egoteko moduan. Ikus dezagun nola egiten duten higidura horren azterketa dinamikoa bi erreferentzia-sistema hauetako behatzaileek:
Fenomeno fisiko berberak (alegia, bakarra) interpretazio koherente bi ditu, nondik behatzen den arabera, bestela esanda, erreferentzia-sistema inertziala izan ala ez izatearen arabera.
Ikus dezagun beste adibide bat kontzeptu hau argitzeko. Imajina dezagun abiadura jakin batekin ezkerreranzko bihurgunea hartzen ari den auto batean doan bidaiaria. Horren masarekin lotutako inertzia dela eta, bidaiariaren higidura-aldaketen aurkako indarra sortzen da, bere hasierako ibilbide lerrozuzean jarraitzera bultzatuz. Horrela, autoak ezkerrerantz biratzen duenez, auto barruko sisteman bidaiaria eskuineko aterantz bultzaturik sentitzen da. Bidaiaria eskuineko eserlekuarekin edo atearekin kontaktuan jartzean, beharrezko indar zentripetuak eragingo du bidaiariarengan, autoarekin batera ezkerretarantz bira dezan.
Gu bizi garen tokiko erreferentzia-sistema Lurrarekin batera ari da biraka, egun bakoitzean birabetea osatuz, alegia, abiadura angeluar honekin:Abiadura hori txikia da, baina biraketa-erradioa handia denez, kontuan hartu beharreko indar zentrifugoa sortzen du. Indar zentrifugo horrek eragin zuzena du lurrazalean neurtzen den grabitatearen balioan. Izan ere, Lurrean neurtzen dugun "pisuak" bi osagai ditu:
Indar zentrifugoa erlatiboki txikia den arren, efektu neurgarriak ditu gure planetaren forman. Izan ere, biraketa-higiduraren eraginez sorturiko indar zentrifugoaren kausaz, gure planetaren forma ez da esfera bat, elipsoide edo esferoide bat baizik, zapaldurik baitago poloetatik. Hain zuzen, Lurreko tokiko bakoitzeko erradioa latitudearen funtzioa da, eta adibidez,
Hortaz, erradio nagusiaren eta txikienaren arteko desberdintasunak balio du. Bi erradio horien bidez, honelaxe definitzen da elipsoidearen zapaldura: Dena den, sistema geodesikoan alderantzizko zapaldura ere erabiltzen da: . Lurraren kasuan balio hau du:Eguzki-sistemako zenbait astroren zapaldurak hauexek dira: Jupiterrena, ; Saturnorena, ; Ilargiarena, . Eguzkiarena baino txikiagoa da.
Isaac Newtonek 1687an argitaraturiko Philosophiæ Naturalis Principia Mathematica liburuan aipatu zuen lehen aldiz ezen gorputz fluido autograbitatorio bat biraka ari bazen, orekan biraketa-elipsoide oblato (hots, esferoide) baten forma hartuko zuela. Zer esanik ez, zapalduraren tamaina materiaren dentsitatearen eta erakarpen grabitatorioaren eta indar zentrifugoaren balioen neurri erlatiboen araberakoa izango da.
Sistema ez-inertzialean batean aztertzen den masadun objektu batean, batera kontsideratu ohi dira bertan eragiten ari diren pisua () eta indar zentrifugoa (), biak ala biak masaren proportzionalak direnak, baliokidetza-printzipioaren arabera. Praktikan, indarrak erabili ordez, indarrei dagozkien azelerazioak kontsideratzen dira: .
Bestalde, Lurrean bizi garenez, pisu-sentsazioa dugu etengabe (grabitatearen azelerazioa da gutxi gorabehera), eta ohituta gaude gorputzaren pisuari eusten zutik, eserita edo oinez goazela. Horregatik, biraketa-higiduran indar zentrifugoaren eraginpean ditugun sentsazioekin konparatzeko, ohitura dago azelerazio zentrifugoa horren multiplo modura emateko; hortaz, azelerazio zentrifugoa era honetan emango dugu grabitatearen azelerazioaren funtzioan: , non zenbaki erreal bat den. Ikus dezagun zein den faktorearen balioa zenbait higidura zirkularren kasuan.
Indar zentrifugoa pairatzen duten objektuen abiadura angeluarren (edo linealaren) eta kurbadura-erradioaren arabera, balio hauek lortzen dira:
Biraka dabiltzan objektuetan sortzen den indar zentrifugoa funsezkoa da hainbat mekanismo eta tresnaren kasuan. Gure eguneroko bizitzan aplikazio asko dituen efektu zentrifugoaren adibideak aipatuko ditugu jarraian.
Xaboi eta urez eratutako ikuzketa bukatzean, mota desberdinetako ehunak blai eginda daudela, ikuzgailuek abian jartzen dute zentrifugazioa, bizpahiru minutuz danborra biraka jarriz abiadura angeluar handiz (), ur-partikulei azelerazio zentrifugo handia emanez. Horrela, ehunek kapilaritatez itsatsita zeuden ur-partikulak kanporantz jaurtitzen dira, indar zentrifugoak kohesio-indarra gainditzean. Ehunak xukaturik geratzen dira, eguzkitan zabaltzean bizkorrago lehor daitezen.
Printzipio berbera erabiltzen da likido heterogeneoen elementuak banantzeko. Indar zentrifugoaren eraginez, dentsitate desberdineko osagaiak banandu daitezke. Teknika hori odolarekin erabiltzen da.
Beste maila batean, “uranioa aberasteko” ere erabiltzen da teknika berbera, baina kasu horretan askoz korapilatsuagoa da prozesua, zeren lehenik uranio “metalaren” atomoak susbtantzia likido edo gaseoso batean barneratu behar baitira, hala nola uranio hexafluoruroan.
Atletismoan efektu zentrifugoa erabiltzen da burdinazko pisu astunak ahalik urrunen jaurtitzeko, bereziki disko- edo mailu-jaurtiketetan (batzuek antzeko teknika darabilte pisu-jaurtiketan ere). Teknika sinplea da: oinak tokitik alde egin gabe, jaurtitzaileak eskuekin oratuta daukan kable baten beste muturrean dagoen bola biraka jartzen du soka tenkatuz, eta bospasei birabete osatuz gero eta bizkorrago (hots, abiadura angeluarra areagotuz, erradioa konstante izanik), harik eta une egokian eskuak askatzen dituen arte, bola norabide egokian libre utziz, ibilbide parabolikoa osa dezan,eta ahalik eta urrunen irits dadin.
Aske dagoen une horretako abiadura linealak balio du; beraz, abiadura angeluarraren eta eta biraketa-erradioaren proportzionala da (esan behar da biraketa-ardatza bertikala dela eta atletaren oinetatik pasatzen dela). Eta bola biraka edukitzeko atletak egin beharreko indar zentripetua da; alegia, abiadura angeluarraren karratuaren eta erradioaren proportzionala. Gauzak horrela, ondo ulertzen da zergatik diren jaurtitzaileak hain garai, besoluze eta indartsu.
Errepideetan edozein motatako ibilgailuan goazela, bihurgune batera iristean, kontuan izan behar da bihurgunea osatzean ibilgailuaren sisteman jasaten den indar zentrifugoa, zeinari aurre egin behar zaion, ibilgailuak irrist egin ez dezan eta "tangentetik irten" ez dadin, istripua izateko arriskuaz. Nola egiten da hori? Bi bitarteko eginbide izango dira horretan: batetik ibilgailuen gurpilen eta errepideko asfaltoaren arteko marruskadura; bestetik, bihurguneetan errepideetan eraikitzen den peraltea edo goragunea.[3]
Alboko irudian ikus daitekeenez, honako indar erreal hauek eragiten dute bihurgunea abiaduraz osatzen ari den autoan: , pisua; , zoluak eginiko indarraren osagai normalak; eta , zoluak eginiko marruskadura-indarra, zeina indar normalaren proportzionala den. Hiru indar horien erresultantea autoaren biraketa ahalbidetuko duen indar zentripetua da, , eta horrek sortuko du ibilbide zirkularra osatzeko azelerazio zentripetua, , kanpotik autoari begira dagoen erreferentzia-sistema inertzialeko behatzaileak neurtuko duena.
Baina autoko erreferentzia-sistema ez-inertzialetik behatuta, gauzak bestela interpretatuko dira, zeren biraketari dagokion indar irudikari bat hartu beharko baita kontuan, indar zentrifugoa alegia, eta autoaren barrutik autoa bera geldi ikusten denez, horrek esan nahi du indar zentrifugo horrek anulatu egiten duela indar erreal guztien erresultantea.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.