Loading AI tools
par de isómeros que se diferencian solo en la posición de un grupo funcional De Wikipedia, la enciclopedia libre
Tautómeros (del griego tauto = igual y griego meros = la parte) se denominan dos isómeros que se diferencian solo en la posición de un grupo funcional. Entre las dos formas existe un equilibrio químico. En un equilibrio tautomérico hay migración de un grupo o átomo.
Puede clasificarse en:
Los tautómeros a menudo difieren en la posición de un grupo y en la posición de un doble enlace:
Los cationes monovalentes como el protón o los aniones monovalentes como los iones cloruro, hidróxido o acetato pueden considerarse como un grupo migratorio. Si un doble enlace se reemplaza por una formación de anillo a partir de enlaces simples, se habla del tautomerismo de la cadena de anillo:[1]
La tautomería no debe confundirse con la mesomería, en la que una misma molécula se describe mediante diferentes fórmulas resonantes.
La prototropía es la forma más común de tautomería y se refiere a la reubicación de un protón.[1] La tautomería prototrópica puede considerarse un subconjunto del comportamiento ácido-base. Los tautómeros prototrópicos son conjuntos de estados de protonación isoméricos con la misma fórmula empírica y carga total. Las tautomerizaciones son catalizadas por:
Dos subcategorías específicas adicionales de tautomerizaciones:
La tautomería de valencia es un tipo de tautomería en la que los enlaces simples y/o dobles se forman y rompen rápidamente, sin migración de átomos o grupos.[4] Es distinto de la tautomería prototrópica e implica procesos con una rápida reorganización de los electrones de enlace.
Un ejemplo de par de tautómeros de valencia con fórmula C6H6O son el óxido de benceno y la oxepina.[4][5]
Otros ejemplos de este tipo de tautomería se pueden encontrar en bullvaleno y en formas abiertas y cerradas de ciertos heterociclos, como las azidas orgánicas y tetrazoles,[6] o la münchnona mesoiónica y acilaminocetena.
La tautomería de valencia requiere de un cambio en la geometría molecular y no debe confundirse con estructuras de resonancia canónica o mesómeros.
La tautomería más conocida es la tautomería ceto-enol. Los enoles (compuestos que cuentan con un grupo hidroxilo unido a un carbono con un doble enlace carbono-carbono) resultantes de la migración formal de un hidrógeno de un carbono en posición alfa al oxígeno del grupo carbonilo.
Generalmente se trata de un equilibrio con predominio de la forma ceto aunque la cantidad de cada forma depende de la estabilidad relativa de ambos tautómeros;[7] afectada por la capacidad de formación de puentes de hidrógeno por parte del disolvente, una posible conjugación de los dobles enlaces o la formación de un puente de hidrógeno intramolecular como en el caso de la acetilacetona que desplaza el equilibrio hacia la forma enólica.
La tautomerización puede ser catalizada tanto por ácidos como por bases.[8][9]
En la catálisis por bases, la base extrae un hidrógeno alfa de la forma cetónica formando un anión enolato; la deslocalización de la carga y posterior protonación del anión lleva a la forma enólica, como muestra la siguiente imagen
En la catálisis por ácidos, se protona el oxígeno del grupo carbonilo. La desprotonación de un carbono alfa da la forma enolíca.
A su vez, este tautomerismo nos permite reemplazar los hidrógenos con deuterio al hacer reaccionar una cetona con un ácido o una base en presencia de deuterio D2O utilizado como disolvente, proceso que puede ser seguido mediante 1H RMN y que nos da la ventaja de saber cuántos hidrógenos alfa posee la molécula en cuestión.
Otra característica interesante de esta tautomería es que la misma puede inducir la estereoisomerización, como nos muestra esta cis-ciclopentanona 2,3-disustiuida que se transforma en su isómero trans que se encuentra menos impedido y por lo tanto es energéticamente más favorable.
Las α-hidroxicetonas (aciloínas) tienen una forma especial de tautomerismo ceto-enólica. Cuando el tautómero ceto se encuentra vecino a un hidroxilo, procede la Transposición de Lobry de Bruyn–van Ekenstein:
El 2-hidroxipropanal tiene un grupo hidroxilo en el átomo α del carbono carbonílico (el segundo átomo de carbono). Esto también polariza el enlace C-H en el átomo α a través de su efecto inductivo negativo y, por lo tanto, facilita la separación de un protón. Un enodiol se forma como una molécula con un doble enlace y dos grupos hidroxi vecinos. La reorganización de un protón puede convertirlo nuevamente en una molécula con un oxígeno carbonílico, en este caso una cetona:
| |
Aquí también hay isomería de posición, ya que la 2-hidroxipropanal y la 1-hidroxipropanona difieren solo en las posiciones de los grupos hidroxilo y carbonilo.
La epimerización es también una tautomerización: en disolución acuosa, los epímeros, como las aldosas, que difieren solo en la posición del grupo hidroxilo en el segundo átomo de carbono, se convierten entre sí. Ejemplos de epímeros pares: glucosa/manosa, ribosa/arabinosa, eritrosa/treosa , D-gliceraldehído/L-gliceraldehído...
Tautomería imina-enamina | La histidina presenta tautomería imina-enamina. |
Los compuestos con un grupo nitroso están en equilibrio con su forma oxima en disolución ácida. El rendimiento suele ser del 100% en el lado de la oxima.
Al igual que con el ácido fosforoso, los H-fosfonatos, como los H-fosfinatos, y los óxidos de fosfina secundarios, muestran un equilibrio tautomérico prototrópico entre la forma tautomérica del óxido (O=PH<) tetracoordinado y la forma hidróxido (HO-P<) tricoordinada (un átomo de hidrógeno se mueve de un átomo de P al oxígeno).
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.