Remove ads
problema matemático De Wikipedia, la enciclopedia libre
El Problema de Basilea es un famoso problema de teoría de números, planteado por primera vez por Pietro Mengoli, y resuelto por Leonhard Euler en 1735. Puesto que el problema había resistido los ataques de los matemáticos más importantes de la época, la solución llevó a Euler rápidamente a la fama cuando tenía veintiocho años. Euler generalizó el problema considerablemente, y sus ideas fueron tomadas años después por Bernhard Riemann en su artículo de 1859 Über die Anzahl der Primzahlen unter einer gegebenen Grösse (Sobre la cantidad de números primos menores que una magnitud dada), en donde definió su función zeta y demostró sus propiedades básicas. El problema debe su nombre a la ciudad de residencia de Euler (Basilea), ciudad donde vivía también la familia Bernoulli, que trató el problema sin éxito.
El problema de Basilea consiste en encontrar la suma exacta de los inversos de los cuadrados de los enteros positivos, esto es, la suma exacta de la serie infinita:
Numéricamente, se puede obtener que la serie es aproximadamente igual a 1,644934. Sin embargo, el problema de Basilea busca la suma exacta de la serie, de forma cerrada, así como una demostración de que dicha suma es correcta. Euler encontró que la suma exacta era π2/6 y anunció su descubrimiento en 1735. Sus argumentos estaban basados en manipulaciones que no estaban aún justificadas, y no fue hasta 1741 cuando pudo dar una demostración verdaderamente rigurosa.
Aunque es poco conocido, esta suma puede escribirse, en forma de integral, como función de dos variables. A menudo, se coloca como ejercicio para estudiantes de matemáticas:
Otra forma de expresar esta serie es mediante la integral de una sola variable:
El método inicial de Euler para la obtención del valor π2/6 es original e ingenioso. En esencia, lo que hizo fue extender resultados aplicables a polinomios finitos, considerándolos también válidos para series infinitas. Claro está que el razonamiento de Euler requiere justificación, pero aun sin ella, simplemente obteniendo el valor correcto, pudo verificarlo numéricamente frente a sumas parciales de la serie. La concordancia observada le dio suficiente confianza como para anunciar su resultado a la comunidad matemática.
Para seguir el razonamiento de Euler, hay que recordar el desarrollo en serie de Taylor de la función seno:
Dividiendo por x, se obtiene
Ahora bien, las raíces (ceros) de sin(x)/x se encuentran precisamente en , donde n = ±1, ±2, ±3... Asúmase que se puede expresar esta serie infinita como producto de factores lineales dados por las raíces, de la misma forma que se hace con los polinomios finitos:
Realizando este producto y agrupando todos los términos en x2, resulta que el coeficiente de x2 para la función sin(x)/x es
Pero del desarrollo en serie de Taylor original de sin(x)/x, se obtiene que el coeficiente de x2 es −1/(3!) = −1/6. Estos dos coeficientes deben ser iguales (por el teorema de unicidad del desarrollo en serie); por tanto,
Multiplicando ambos miembros de la igualdad por −π2 obtenemos la suma de los inversos de los cuadrados de los enteros positivos.
La función zeta de Riemann ζ(s) es una de las funciones más importantes en matemáticas, debido a su relación con la distribución de los números primos. La función está definida para todo número complejo s cuya parte real sea mayor que la unidad (Re(s) > 1) por la siguiente fórmula:
Haciendo s = 2, se comprueba que ζ(2) es igual a la suma de los inversos de los cuadrados de los enteros positivos.
La suma de esta serie converge, pudiéndose demostrar con la siguiente desigualdad:
Esto marca el límite superior ζ(2) < 2, y como la suma infinita tiene sólo términos positivos, debe converger. Puede demostrarse que ζ(s) se expresa en términos de los números de Bernoulli siempre que s sea un número par positivo.
El siguiente razonamiento demuestra la identidad ζ(2) = π2/6, donde ζ(s) es la función zeta de Riemann. Es con mucho la demostración más sencilla hasta ahora disponible; mientras otras demostraciones emplean resultados de matemática avanzada, como análisis de Fourier, análisis complejo, y cálculo multivariable, la siguiente no requiere siquiera cálculo de una variable (aunque es necesaria la obtención de un límite al final).
El origen de la demostración es incierto. Apareció en la revista Eureka en 1982, atribuida a John Scholes, pero Scholes dice haber aprendido la demostración de Peter Swinnerton-Dyer, y en cualquier caso mantiene que ésta era "de dominio público en la Universidad de Cambridge a finales de los 60".
Para comprender la demostración, es necesario conocer los siguientes resultados:
La idea principal en la que descansa la demostración es la de limitar las sumas parciales
entre dos expresiones, las cuales tenderán ambas a π2/6 cuando m tienda a infinito. Las dos expresiones se obtienen de identidades que incluyen las funciones cotangente y cosecante. Estas identidades son a su vez obtenidas de la fórmula de De Moivre, y eso es lo que nos disponemos a hacer ahora.
Sea x un número real tal que 0 < x < π/2, y sea n un entero positivo. Entonces de la fórmula de De Moivre y de la definición de cotangente, tenemos
Del binomio de Newton, tenemos
Combinando ambas ecuaciones e igualando las partes imaginarias, obtenemos la identidad
Tomamos esta identidad y establecemos que n = 2m + 1, siendo m un entero positivo, y x = r π/(2m + 1), siendo r = 1, 2,..., m. Entonces nx = r π, por lo que sin(nx) = 0 y, de esta forma,
Esta ecuación es válida para todos los valores de x = r π/(2m + 1), tales que r = 1, 2,..., m. Estos valores de x son números distintos estrictamente entre 0 y π/2. Dado que la función cot2(x) es inyectiva en el intervalo (0, π/2), los números cot2(x) = cot2(r π/(2m + 1)) son distintos para cada valor de r = 1, 2,..., m. Pero por la ecuación anterior, cada uno de estos m números distintos es una raíz del polinomio de grado m
Esto significa que los números x = cot2(r π/(2m + 1)), para r = 1, 2,..., m son precisamente las raíces del polinomio p(t). Pero podemos calcular directamente la suma de las raíces examinando los coeficientes, y la comparación muestra que
Sustituyendo la identidad csc2 x = cot2 x + 1, tenemos
Consideremos ahora la desigualdad cot2 x < 1/x2 < csc2 x. Si sumamos todas estas desigualdades para cada uno de los valores x = r π/(2m + 1), y empleamos las dos identidades anteriores, obtenemos
Multiplicando todo por (π/(2m + 1))2, pasamos a
Cuando m tiende a infinito, las expresiones a la izquierda y a la derecha tienden ambas a π2/6, luego por el teorema de compresión,
con lo que queda completa la demostración. C.Q.D.
En 1881, Ernesto Cesàro demostró que la probabilidad de que dos enteros sean primos relativos es , que es el inverso de ζ(2). Mediante la demostración de más arriba, el teorema de Cesaro permite calcular un valor para π a partir de una muestra grande de enteros aleatorios, determinando la proporción de éstos que son primos relativos.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.