En geometrio, 5-duonvertica hiperkubo5-duonkubo121 hiperpluredro de Gosset5-ic duonregula hiperpluredroE5 hiperpluredro estas duonregula kvin-dimensia 5-hiperpluredro.

Rapidaj faktoj
5-duonvertica hiperkubo
Pliaj nomoj 121 hiperpluredro de Gosset
E5 hiperpluredro
Thumb
Orta projekcio en plurlatero de Petrie
Thumb
Perspektiva projekcio
Speco 5-hiperpluredro,
uniforma hiperpluredro,
duonregula hiperpluredro,
duonvertica hiperkubo (familio Bn),
k21 hiperpluredro (familio En),
1k2 hiperpluredro
Vertica figuro Rektigita 5-ĉelo
Simbolo de Schläfli {31, 2, 1}
h{4, 33}
s{25}
Figuro de Coxeter-Dynkin (o)3/003o3o
( )4o3o3o3o
( )2( )2( )2( )2( )
Verticoj 16
Lateroj 80
Edroj 160 trianguloj {3}
Ĉeloj 120:
40 kvaredroj {31, 0, 1}
80 kvaredroj {3, 3}
4-hiperĉeloj 26:
10 16-ĉeloj {31, 1, 1}
16 5-ĉeloj {3, 3, 3}
Geometria simetria grupo D5, [32, 1, 1]
Plurlatero de Petrie Oklatero
Propraĵoj Konveksa
vdr
Fermi

Ĝi povas esti konstruita surbaze de 5-hiperkubo per forigo de alternaj verticoj. Ĝi estas parto de diversdimensia familio de duonverticaj hiperkuboj kiuj estas ricevataj per alternado de la respektivaj hiperkuboj.

Ĝi estis la sola duonregula 5-hiperpluredro (konsistanta el pli ol unu speco de regulaj hiperĉeloj). Pro tio ke ĝi estas duonregula ĝi estas ankaŭ uniforma.

Ĝi estis esplorita de Thorold Gosset, li nomis ĝin kiel 5-ic duonregula.

Coxeter nomis ĉi tiun hiperpluredron kiel 121 de ĝia figuro de Coxeter-Dynkin, kiu havas branĉojn de longo 2, 1 kaj 1 kun ringita vertico sur unu el la mallongaj branĉoj. Ĝi ekzistas en la duonregula k 21 hiperpluredra familio kiel 121 kun la hiperpluredroj de Gosset : 221, 321, 421.

Estas 23 uniformaj 5-hiperpluredroj kiuj povas esti konstruitaj de la B5 simetrio de la 5-duonvertica hiperkubo, 7 el ili estas unikaj al ĉi tiu familio, kaj 16 estas komunigita en la 5-hiperkuba familio.

Karteziaj koordinatoj

Karteziaj koordinatoj de verticoj de 5-duonvertica hiperkubo centrita je la fonto (0, 0, 0, 0, 0) kaj latera longo 2√2 estas:

(±1, ±1, ±1, ±1, ±1)

kun nepara kvanto de plusoj. Ĉi tiel 5-duonvertica hiperkubo havas duonon de vertico de la 5-hiperkubo, ĉar 5-hiperkubo havas verticojn laŭ la sama regulo sed sen postulo de nepareco de kvanto de plusoj.

Vidu ankaŭ

Eksteraj ligiloj

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.