From Wikipedia, the free encyclopedia
En geometrio, la ĉirkaŭskribita cirklo de plurlatero estas cirklo, kiu pasas tra ĉiuj verticoj de la plurlatero.
Plurlatero, kiu havas ĉirkaŭskribitan cirklon, estas cikla plurlatero. Ĉiu regula plurlatero, ĉiu triangulo kaj ĉiu ortangulo estas cikla.
Rilatanta nocio estas la minimuma baranta cirklo, kiu estas la plej malgranda cirklo kiu plene enhavas la plurlateron. Ne ĉiu plurlatero havas ĉirkaŭskribitan cirklon, ĉar verticoj de plurlatero ne nepre ĉiuj kuŝi sur cirklo. Sed ĉiu plurlatero havas unikan minimuman barantan cirklon, kiu povas esti konstruita per algoritmo dum lineara tempo. Eĉ se plurlatero havas ĉirkaŭskribitan cirklo, ĝi povas ne koincidi kun ĝia minimuma baranta cirklo; ekzemple, por malakuta triangulo, la minimuma baranta cirklo havas la plej longan lateron de la triangulo kiel diametro kaj ne trapasas la verticon kun angulo pli granda ol orto.
Ĉiu triangulo estas cikla, aŭ alivorte ĉiu triangulo havas ĉirkaŭskribitan cirklo.
La centro de ĉirkaŭskribita cirklo de triangulo povas troviĝi kiel la komunaĵo de la tri perpendikularoj al lateroj je iliaj mezpunktoj. Ĉi tiu punkto estas la centro de ĉirkaŭskribita cirklo ĉar ĝi estas samdistanca de la triangulo, do samdistanca de ĉiuj tri verticoj de la triangulo.
La situo de centro de ĉirkaŭskribita cirklo dependas sur la speco de triangulo:
La diametro de la ĉirkaŭskribita cirklo povas estas egala al longo de iu latero de la triangulo dividita per sinuso de la kontraŭa angulo. La rezulto ne dependas de tio kiu latero estas konsiderata, pro la leĝo de sinusoj. La eŭlera cirklo de la triangulo havas diametron kiu estas duono de diametro de la ĉirkaŭskribita cirklo. Diametro d de la ĉirkaŭskribita cirklo de triangulo estas:
Alia formulado estas la sekva:
En ĉiu triangulo, la centro de ĉirkaŭskribita cirklo, la pezocentro kaj altocentro estas ĉiam sur la sama rekto kiu estas nomata kiel la eŭlera rekto.
La vertico-transitiva konjugita de la centro de ĉirkaŭskribita cirklo estas la altocentro.
La anguloj je kiu la ĉirkaŭskribita cirklo intersekciĝas kun latero de la triangulo koincidas kun angulo je kiu du la aliaj lateroj sekcas unu la alian.
Kvarlatero, kiu povas esti ĉirkaŭskribita, havas apartajn proprecojn, inter ili estas tiu laŭ kiu la sumo de la kontraŭaj anguloj estas 180° aŭ π radianoj.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.