Loading AI tools
From Wikipedia, the free encyclopedia
A zone diagram is a certain geometric object which a variation on the notion of Voronoi diagram. It was introduced by Tetsuo Asano, Jiří Matoušek, and Takeshi Tokuyama in 2007.[1]
This article needs attention from an expert in mathematics. The specific problem is: this appears to fall afoul of WP:NOTHOWTO, and an expert may be able to resolve this. (November 2022) |
Formally, it is a fixed point of a certain function. Its existence or uniqueness are not clear in advance and have been established only in specific cases. Its computation is not obvious either.
Consider a group of different points in the Euclidean plane. Each point is called a site. When we speak about the Voronoi diagram induced by these sites, we associate to the site the set of all points in the plane whose distance to the given site is not greater to their distance to any other site . The collection of these regions is the Voronoi diagram associated with these sites, and it induces a decomposition of the plane into regions: the Voronoi regions (Voronoi cells).
In a zone diagram the region associated with the site is defined a little bit differently: instead of associating it the set of all points whose distance to is not greater than their distance to the other sites, we associate to the set of all points in the plane whose distance to is not greater than their distance to any other region. Formally,
Here denotes the euclidean distance between the points and and is the distance between the point and the set . In addition, since we consider the plane. The tuple is the zone diagram associated with the sites.
The problem with this definition is that it seems circular: in order to know we should know for each index but each such is defined in terms of . On a second thought, we see that actually the tuple is a solution of the following system of equations:
Rigorously, a zone diagram is any solution of this system, if such a solution exists. This definition can be extended without essentially any change to higher dimensions, to sites which are not necessarily points, to infinitely many sites, etc.
In some settings, such as the one described above, a zone diagram can be interpreted as a certain equilibrium between mutually hostile kingdoms,.[1][2] In a discrete setting it can be interpreted as a stable configuration in a certain combinatorial game.[2]
Let be a metric space and let be a set of at least 2 elements (indices), possibly infinite. Given a tuple of nonempty subsets of , called the sites, a zone diagram with respect to this tuple is a tuple of subsets of such that for all the following equation is satisfied:
The system of equations which defines the zone diagram can be represented as a fixed point of a function defined on a product space. Indeed, for each index let be the set of all nonempty subsets of . Let
and let be the function defined by , where and
Then is a zone diagram if and only if it is a fixed point of Dom, that is, . Viewing zone diagrams as fixed points is useful since in some settings known tools or approaches from fixed point theory can be used for investigating them and deriving relevant properties (existence, etc.).
Following the pioneering work of Asano et al.[1] (existence and uniqueness of the zone diagram in the euclidean plane with respect to finitely many point sites), several existence or existence and uniqueness results have been published. As of 2012, the most general results which have been published are:
More information is needed.
In addition to Voronoi diagrams, zone diagrams are closely related to other geometric objects such as double zone diagrams,[2] trisectors,[5] k-sectors,[6] mollified zone diagrams[7] and as a result may be used for solving problems related to robot motion and VLSI design,.[5][6]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.