Zinc finger and BTB domain-containing protein 32 is a protein that in humans is encoded by the 1960 bp ZBTB32 gene. The 52 kDa protein (487 aa) is a transcriptional repressor and the gene is expressed in T and B cells upon activation, but also significantly in testis cells. It is a member of the Poxviruses and Zinc-finger (POZ) and Krüppel (POK) family of proteins,[5][6] and was identified in multiple screens involving either immune cell tumorigenesis or immune cell development.
Quick Facts Available structures, PDB ...
Close
The protein recruits histone modification enzymes to chromatin to affect gene activation.[7] ZBTB32 recruits corepressors, such as N-CoR and HDACs to its target genes, induces repressive chromatin states and acts cooperatively with other proteins, e.g. with Blimp-1,[7] to suppress the transcription of genes .[7]
It contains a N-terminal BTB/POZ domain (IPR000210) or a SKP1/BTB/POZ domain (IPR011333), and three C-terminal zinc fingers, Znf_C2H2_sf. (IPR036236), Znf_C2H2_type domain (IPR013087), a Znf_RING/FYVE/PHD domain (IPR013083), followed by a putative UBZ4 domain.[8]
Zinc finger and BTB domain-containing protein 32 is also known as:
- Fanconi Anemia Zinc Finger Protein (FAZF),
- Testis Zinc Finger Protein (TZFP),
- FANCC-Interacting Protein (FAXP),
- Zinc Finger Protein 538 (ZNF538),
- Repressor of GATA3 (ROG),
- Promyelocytic Leukemia Zinc Finger and Zbtb16 (PLZF)-like zinc finger protein (PLZP)
Zbtb32 has been shown to interact with:
- Fanconi anemia complementation group C (Fancc)[9][10]
- Thioredoxin interacting protein (Txnip), but the interaction might be unspecific; however, Vitamin D3 upregulated protein 1 (VDUP1) seems to interact [11]
- Zinc finger and BTB domain-containing protein 16 (Zbtb16)[5]
- Zinc-finger elbow-related proline domain protein 2 (Zpo2)[12]
- GATA binding protein (Gata2)[13]
The expression of ZBTB32 is induced by inflammatory cytokines and promotes proliferation of natural killer cells.[14]
Zbtb32 knockout mice show a trend to develop type 1 diabetes, although the difference is not statistically different. Furthermore the Zbtb32 do not show a difference in lymphocyte proliferation, possibly due to compensation from other genes.[15]
ZBTB32 is highly expressed in spermatogonial stem cells, in hematopoietic stem and progenitor cells, in diffuse large B-cell lymphoma (DLBCL) and appears to suppress the immune system by silencing the CIITA gene.[16]
The transcription factor gene GATA3 is altered in mammary tumors. Down-regulation of GATA3 expression and activity by the Zinc-finger elbow-related proline domain protein 2 (Zpo2), whereas Zbtb32 facilitates Zpo2 targeting to the GATA3 promoter, results in the development of aggressive breast cancers.[12]
A DNA methylation correlation network was built based on the methylation correlation between differentially methylated genes. A survival analysis of candidate biomarkers was performed. One of eight biomarkers and hub genes identified
in colon cancer is ZBTB32.[17]
The expression of Zbtb32 is upregulated after exposure to cisplatin.[18]
Hoatlin ME, Zhi Y, Ball H, Silvey K, Melnick A, Stone S, Arai S, Hawe N, Owen G, Zelent A, Licht JD (December 1999). "A novel BTB/POZ transcriptional repressor protein interacts with the Fanconi anemia group C protein and PLZF". Blood. 94 (11): 3737–47. doi:10.1182/blood.V94.11.3737. PMID 10572087.
Rizzo AA, Salerno PE, Bezsonova I, Korzhnev DM (September 2014). "NMR structure of the human Rad18 zinc finger in complex with ubiquitin defines a class of UBZ domains in proteins linked to the DNA damage response". Biochemistry. 53 (37): 5895–906. doi:10.1021/bi500823h. PMID 25162118.
Hoatlin ME, Zhi Y, Ball H, Silvey K, Melnick A, Stone S, Arai S, Hawe N, Owen G, Zelent A, Licht JD (December 1999). "A novel BTB/POZ transcriptional repressor protein interacts with the Fanconi anemia group C protein and PLZF". Blood. 94 (11): 3737–47. doi:10.1182/blood.V94.11.3737. PMID 10572087.
Reuter TY, Medhurst AL, Waisfisz Q, Zhi Y, Herterich S, Hoehn H, Gross HJ, Joenje H, Hoatlin ME, Mathew CG, Huber PA (October 2003). "Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport". Experimental Cell Research. 289 (2): 211–21. doi:10.1016/s0014-4827(03)00261-1. PMID 14499622.
Han SH, Jeon JH, Ju HR, Jung U, Kim KY, Yoo HS, Lee YH, Song KS, Hwang HM, Na YS, Yang Y, Lee KN, Choi I (June 2003). "VDUP1 upregulated by TGF-beta1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression". Oncogene. 22 (26): 4035–46. doi:10.1038/sj.onc.1206610. PMID 12821938.
- Lin W, Lai CH, Tang CJ, Huang CJ, Tang TK (November 1999). "Identification and gene structure of a novel human PLZF-related transcription factor gene, TZFP". Biochemical and Biophysical Research Communications. 264 (3): 789–95. doi:10.1006/bbrc.1999.1594. PMID 10544010.
- Dai MS, Chevallier N, Stone S, Heinrich MC, McConnell M, Reuter T, Broxmeyer HE, Licht JD, Lu L, Hoatlin ME (July 2002). "The effects of the Fanconi anemia zinc finger (FAZF) on cell cycle, apoptosis, and proliferation are differentiation stage-specific". The Journal of Biological Chemistry. 277 (29): 26327–34. doi:10.1074/jbc.M201834200. PMID 11986317.
- Han SH, Jeon JH, Ju HR, Jung U, Kim KY, Yoo HS, Lee YH, Song KS, Hwang HM, Na YS, Yang Y, Lee KN, Choi I (June 2003). "VDUP1 upregulated by TGF-beta1 and 1,25-dihydorxyvitamin D3 inhibits tumor cell growth by blocking cell-cycle progression". Oncogene. 22 (26): 4035–46. doi:10.1038/sj.onc.1206610. PMID 12821938.
- Reuter TY, Medhurst AL, Waisfisz Q, Zhi Y, Herterich S, Hoehn H, Gross HJ, Joenje H, Hoatlin ME, Mathew CG, Huber PA (October 2003). "Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport". Experimental Cell Research. 289 (2): 211–21. doi:10.1016/S0014-4827(03)00261-1. PMID 14499622.
- Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (October 2005). "Towards a proteome-scale map of the human protein–protein interaction network". Nature. 437 (7062): 1173–8. Bibcode:2005Natur.437.1173R. doi:10.1038/nature04209. PMID 16189514. S2CID 4427026.
- Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, Barabási AL, Vidal M, Zoghbi HY (May 2006). "A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration". Cell. 125 (4): 801–14. doi:10.1016/j.cell.2006.03.032. PMID 16713569. S2CID 13709685.
- Ikeda R, Yoshida K, Inoue I (May 2007). "Identification of FAZF as a novel BMP2-induced transcription factor during osteoblastic differentiation". Journal of Cellular Biochemistry. 101 (1): 147–54. doi:10.1002/jcb.21165. PMID 17171645. S2CID 46504508.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.