Remove ads
Topological space in mathematics From Wikipedia, the free encyclopedia
In topology, the Tychonoff plank is a topological space defined using ordinal spaces that is a counterexample to several plausible-sounding conjectures. It is defined as the topological product of the two ordinal spaces and , where is the first infinite ordinal and the first uncountable ordinal. The deleted Tychonoff plank is obtained by deleting the point .
The Tychonoff plank is a compact Hausdorff space and is therefore a normal space. However, the deleted Tychonoff plank is non-normal.[1] Therefore the Tychonoff plank is not completely normal. This shows that a subspace of a normal space need not be normal. The Tychonoff plank is not perfectly normal because it is not a Gδ space: the singleton is closed but not a Gδ set.
The Stone–Čech compactification of the deleted Tychonoff plank is the Tychonoff plank.[2]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.