Transition metal oxalate complex
From Wikipedia, the free encyclopedia
Transition metal oxalate complexes are coordination complexes with oxalate (C2O42−) ligands. Some are useful commercially, but the topic has attracted regular scholarly scrutiny. Oxalate (C2O42-) is a kind of dicarboxylate ligand.[1] As a small, symmetrical dinegative ion, oxalate commonly forms five-membered MO2C2 chelate rings. Mixed ligand complexes are known, e.g., [Co(C2O4)(NH3)4]κ+.[2]
Structures of some metal oxalate complexes
- [Cr2(ox)5]4-.
- Potassium ferrioxalate (K3[Fe(C2O4)3]·3H2O)
- Oxaliplatin, an anticancer drug
- [Zr(ox)4]4-
Examples
Summarize
Perspective
Homoleptic complexes
Homoleptic oxalato complexes are common, e.g., those with the formula [M(κ2-C2O4)3]n-: M = V(III), Mn(III),[3] Cr(III), Tc(IV), Fe(III), Ru(III), Co(III), Rh(III), Ir(III). These anions are chiral (D3 symmetry), and some have been resolved into their component enantiomers.[4] Some early metals form tetrakis complexes of the type [M(κ2-C2O4)4]n- M = Nb(V),[5] Zr(IV),[6] Hf(IV),[7] Ta(V),[8]
The Δ and Λ enantiomorphs of [Fe(C2O4)3]3− have been separated.

Oxalate is often a bridging ligand forming bi- and polynuclear complexes with (κ2,κ'2-C2O4)M2 cores. Illustrative binuclear complexes are [M2(C2O4)5]2- M = Fe(II)[10] and Cr(III)[11]
Mixed ligand complexes
Whereas homoleptic complexes are easier to describe, far more abundant are complexes with oxalate and other ligands. Many metals form polynuclear complexes with oxalate and water.[12] In ferric oxalate, Fe2(C2O4)3·4H2O, one oxalate is bonded through all four oxygen atoms and another oxalate binds through only two oxygen atoms, in both cases bridging. "Durrant's salt" contains the anionic complex [Co(C2O4)2(mu−−OH)]4−2.[13]
Reactions and applications

Metal oxalate complexes are photoactive, degrading with loss of carbon dioxide. This reaction is the basis of the technique called actinometry. Ferrioxalate undergoes photoreduction. The iron centre is reduced (gains an electron) from the +3 to the +2 oxidation state, while an oxalate ion is oxidised to carbon dioxide:
- 2 [Fe(C
2O
4)
3]3− + hν → 2 [Fe(C
2O
4)
2]2− + 2 CO
2 + C
2O2−
4
The redox reaction has been used to access unusual complexes. UV-irradiation of Pt(C2O4)(PPh3)2 gives derivatives of Pt0(PPh3)2.
Metal oxalates with the stoichiometry 1:1 are often insoluble. This fact provides a way to separate metal ions from solutions, including extract of ores. Combustion of metal oxalates gives metal oxides.[14]
Natural occurrence
The minerals moolooite and antipinite are examples of naturally occurring copper oxalates. They arise from the weathering of other copper ores. A few other oxalate-containing minerals are known.[15]
See also
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.