Transgression map
Concept in algebraic topology From Wikipedia, the free encyclopedia
In algebraic topology, a transgression map is a way to transfer cohomology classes. It occurs, for example in the inflation-restriction exact sequence in group cohomology, and in integration in fibers. It also naturally arises in many spectral sequences; see spectral sequence#Edge maps and transgressions.
Inflation-restriction exact sequence
Summarize
Perspective
The transgression map appears in the inflation-restriction exact sequence, an exact sequence occurring in group cohomology. Let G be a group, N a normal subgroup, and A an abelian group which is equipped with an action of G, i.e., a homomorphism from G to the automorphism group of A. The quotient group acts on
Then the inflation-restriction exact sequence is:
The transgression map is the map .
Transgression is defined for general ,
- ,
only if for .[1]
Notes
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.