Toeplitz matrix
Matrix with shifting rows From Wikipedia, the free encyclopedia
In linear algebra, a Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix in which each descending diagonal from left to right is constant. For instance, the following matrix is a Toeplitz matrix:
Any matrix of the form
is a Toeplitz matrix. If the element of is denoted then we have
A Toeplitz matrix is not necessarily square.
Solving a Toeplitz system
Summarize
Perspective
A matrix equation of the form
is called a Toeplitz system if is a Toeplitz matrix. If is an Toeplitz matrix, then the system has at most only unique values, rather than . We might therefore expect that the solution of a Toeplitz system would be easier, and indeed that is the case.
Toeplitz systems can be solved by algorithms such as the Schur algorithm or the Levinson algorithm in time.[1][2] Variants of the latter have been shown to be weakly stable (i.e. they exhibit numerical stability for well-conditioned linear systems).[3] The algorithms can also be used to find the determinant of a Toeplitz matrix in time.[4]
A Toeplitz matrix can also be decomposed (i.e. factored) in time.[5] The Bareiss algorithm for an LU decomposition is stable.[6] An LU decomposition gives a quick method for solving a Toeplitz system, and also for computing the determinant.
Properties
- An Toeplitz matrix may be defined as a matrix where , for constants . The set of Toeplitz matrices is a subspace of the vector space of matrices (under matrix addition and scalar multiplication).
- Two Toeplitz matrices may be added in time (by storing only one value of each diagonal) and multiplied in time.
- Toeplitz matrices are persymmetric. Symmetric Toeplitz matrices are both centrosymmetric and bisymmetric.
- Toeplitz matrices are also closely connected with Fourier series, because the multiplication operator by a trigonometric polynomial, compressed to a finite-dimensional space, can be represented by such a matrix. Similarly, one can represent linear convolution as multiplication by a Toeplitz matrix.
- Toeplitz matrices commute asymptotically. This means they diagonalize in the same basis when the row and column dimension tends to infinity.
- For symmetric Toeplitz matrices, there is the decomposition
- where is the lower triangular part of .
- The inverse of a nonsingular symmetric Toeplitz matrix has the representation
- where and are lower triangular Toeplitz matrices and is a strictly lower triangular matrix.[7]
Discrete convolution
Summarize
Perspective
The convolution operation can be constructed as a matrix multiplication, where one of the inputs is converted into a Toeplitz matrix. For example, the convolution of and can be formulated as:
This approach can be extended to compute autocorrelation, cross-correlation, moving average etc.
Infinite Toeplitz matrix
A bi-infinite Toeplitz matrix (i.e. entries indexed by ) induces a linear operator on .
The induced operator is bounded if and only if the coefficients of the Toeplitz matrix are the Fourier coefficients of some essentially bounded function .
In such cases, is called the symbol of the Toeplitz matrix , and the spectral norm of the Toeplitz matrix coincides with the norm of its symbol. The proof can be found as Theorem 1.1 of Böttcher and Grudsky.[8]
See also
- Circulant matrix, a square Toeplitz matrix with the additional property that
- Hankel matrix, an "upside down" (i.e., row-reversed) Toeplitz matrix
- Szegő limit theorems – Determinant of large Toeplitz matrices
- Toeplitz operator – compression of a multiplication operator on the circle to the Hardy space
Notes
References
Further reading
Wikiwand - on
Seamless Wikipedia browsing. On steroids.