Tin(II) oxide

Chemical compound, stannous oxide (SnO) From Wikipedia, the free encyclopedia

Tin(II) oxide

Tin(II) oxide (stannous oxide) is a compound with the formula SnO. It is composed of tin and oxygen where tin has the oxidation state of +2. There are two forms, a stable blue-black form and a metastable red form.

Quick Facts Names, Identifiers ...
Tin(II) oxide
Thumb
Thumb
Thumb
Names
IUPAC name
Tin(II) oxide
Other names
Stannous oxide
Tin monoxide
Identifiers
3D model (JSmol)
ECHA InfoCard 100.040.439
EC Number
  • 244-499-5
RTECS number
  • XQ3700000
UNII
  • InChI=1S/O.Sn
  • O=[Sn]
Properties
SnO
Molar mass 134.709 g·mol−1
Appearance black or red powder when anhydrous, white when hydrated
Density 6.45 g/cm3
Melting point 1,080 °C (1,980 °F; 1,350 K)[1]
insoluble
19.0·10−6 cm3/mol
Structure
tetragonal
Thermochemistry
56 J·mol−1·K−1[2]
−285 kJ·mol−1[2]
Hazards
Flash point Non-flammable
NIOSH (US health exposure limits):
PEL (Permissible)
none[3]
REL (Recommended)
TWA 2 mg/m3[3]
IDLH (Immediate danger)
N.D.[3]
Safety data sheet (SDS) ICSC 0956
Related compounds
Other anions
Tin sulfide
Tin selenide
Tin telluride
Other cations
Carbon monoxide
Silicon monoxide
Germanium(II) oxide
Lead(II) oxide
Related tin oxides
Tin dioxide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Close

Preparation and reactions

Summarize
Perspective
Thumb
Tin(II) oxide burning

Blue-black SnO can be produced by heating the tin(II) oxide hydrate, SnO·xH2O (x < 1) precipitated when a tin(II) salt is reacted with an alkali hydroxide such as NaOH.[4]
Metastable, red SnO can be prepared by gentle heating of the precipitate produced by the action of aqueous ammonia on a tin(II) salt.[4]
SnO may be prepared as a pure substance in the laboratory, by controlled heating of tin(II) oxalate (stannous oxalate) in the absence of air or under a CO2 atmosphere. This method is also applied to the production of ferrous oxide and manganous oxide.[5][6]

SnC2O4·2H2O → SnO + CO2 + CO + 2 H2O

Tin(II) oxide burns in air with a dim green flame to form SnO2.[4]

2 SnO + O2 → 2 SnO2

When heated in an inert atmosphere initially disproportionation occurs giving Sn metal and Sn3O4 which further reacts to give SnO2 and Sn metal.[4]

4SnO → Sn3O4 + Sn
Sn3O4 → 2SnO2 + Sn

SnO is amphoteric, dissolving in strong acid to give tin(II) salts and in strong base to give stannites containing Sn(OH)3.[4] It can be dissolved in strong acid solutions to give the ionic complexes Sn(OH2)32+ and Sn(OH)(OH2)2+, and in less acid solutions to give Sn3(OH)42+.[4] Note that anhydrous stannites, e.g. K2Sn2O3, K2SnO2 are also known.[7][8][9] SnO is a reducing agent and is thought to reduce copper(I) to metallic clusters in the manufacture of so-called "copper ruby glass".[10]

Structure

Black, α-SnO adopts the tetragonal PbO layer structure containing four coordinate square pyramidal tin atoms.[11] This form is found in nature as the rare mineral romarchite.[12] The asymmetry is usually simply ascribed to a sterically active lone pair; however, electron density calculations show that the asymmetry is caused by an antibonding interaction of the Sn(5s) and the O(2p) orbitals.[13] The electronic structure and chemistry of the lone pair determines most of the properties of the material.[14]

Non-stoichiometry has been observed in SnO.[15]

The electronic band gap has been measured between 2.5eV and 3eV.[16]

Uses

The dominant use of stannous oxide is as a precursor in manufacturing of other, typically divalent, tin compounds or salts. Stannous oxide may also be employed as a reducing agent and in the creation of ruby glass.[17] It has a minor use as an esterification catalyst.

Cerium(III) oxide in ceramic form, together with Tin(II) oxide (SnO) is used for illumination with UV light.[18]

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.