This timeline of chemistry lists important works, discoveries, ideas, inventions, and experiments that significantly changed humanity's understanding of the modern science known as chemistry, defined as the scientific study of the composition of matter and of its interactions.
Known as "the central science", the study of chemistry is strongly influenced by, and exerts a strong influence on, many other scientific and technological fields. Many historical developments that are considered to have had a significant impact upon our modern understanding of chemistry are also considered to have been key discoveries in such fields as physics, biology, astronomy, geology, and materials science.[1]
Remove ads
Prior to the acceptance of the scientific method and its application to the field of chemistry, it is somewhat controversial to consider many of the people listed below as "chemists" in the modern sense of the word. However, the ideas of certain great thinkers, either for their prescience, or for their wide and long-term acceptance, bear listing here.
c. 450 BC
Empedocles asserts that all things are composed of four primal roots (later to be renamed stoicheia or elements): earth, air, fire, and water, whereby two active and opposing cosmic forces, love and strife, act upon these elements, combining and separating them into infinitely varied forms.[2]
c. 440 BC
Leucippus and Democritus propose the idea of the atom, an indivisible particle that all matter is made of. This idea is largely rejected by natural philosophers in favor of the Aristotelian view (see below).[3][4]
c. 360 BC
Plato coins term ‘elements’ (stoicheia) and in his dialogue Timaeus, which includes a discussion of the composition of inorganic and organic bodies and is a rudimentary treatise on chemistry, assumes that the minute particle of each element had a special geometric shape: tetrahedron (fire), octahedron (air), icosahedron (water), and cube (earth).[5]
c. 350 BC
Aristotle, expanding on Empedocles, proposes idea of a substance as a combination of matter and form. Describes theory of the Five Elements, fire, water, earth, air, and aether. This theory is largely accepted throughout the western world for over 1000 years.[6]
Zosimos of Panopolis writes some of the oldest known books on alchemy, which he defines as the study of the composition of waters, movement, growth, embodying and disembodying, drawing the spirits from bodies and bonding the spirits within bodies.[8]
c. 800
The Secret of Creation (Arabic: Sirr al-khalīqa), an anonymous encyclopedic work on natural philosophy falsely attributed to Apollonius of Tyana, records the earliest known version of the long-held theory that all metals are composed of various proportions of sulfur and mercury.[9] This same work also contains the earliest known version of the Emerald Tablet,[10] a compact and cryptic Hermetic text which was still commented upon by Isaac Newton.[11]
c. 850–900
Arabic works attributed to Jābir ibn Ḥayyān (Latin: Geber) introduce a systematic classification of chemical substances, and provide instructions for deriving an inorganic compound (sal ammoniac or ammonium chloride) from organic substances (such as plants, blood, and hair) by chemical means.[12]
c. 900
Abū Bakr al-Rāzī (Latin: Rhazes), a Persian alchemist, conducts experiments with the distillation of sal ammoniac (ammonium chloride), vitriols (hydrated sulfates of various metals), and other salts,[13] representing the first step in a long process that would eventually lead to the thirteenth-century discovery of the mineral acids.[14]
Recipes for the production of aqua ardens ("burning water", i.e., ethanol) by distilling wine with common salt start to appear in a number of Latin alchemical works.[17]
The works of Taddeo Alderotti (1223–1296) describe a method for concentrating ethanol involving repeated fractional distillation through a water-cooled still, by which an ethanol purity of 90% could be obtained.[19]
Roger Bacon publishes Opus Maius, which among other things, proposes an early form of the scientific method, and contains results of his experiments with gunpowder.[23]
c. 1310
Pseudo-Geber, an anonymous alchemist who wrote under the name of Geber (i.e., Jābir ibn Hayyān, see above), publishes the Summa perfectionis magisterii. This work contains experimental demonstrations of the corpuscular nature of matter that would still be used by seventeenth-century chemists such as Daniel Sennert.[24] Pseudo-Geber is one of the first alchemists to describe mineral acids such as aqua fortis or 'strong water' (nitric acid, capable of dissolving silver) and aqua regia or 'royal water' (a mixture of nitric acid and hydrochloric acid, capable of dissolving gold and platinum).[25]
c. 1530
Paracelsus develops the study of iatrochemistry, a subdiscipline of alchemy dedicated to extending life, thus being the roots of the modern pharmaceutical industry. It is also claimed that he is the first to use the word "chemistry".[8]
Sir Francis Bacon publishes The Proficience and Advancement of Learning, which contains a description of what would later be known as the scientific method.[27]
1605
Michal Sedziwój publishes the alchemical treatise A New Light of Alchemy which proposed the existence of the "food of life" within air, much later recognized as oxygen.[28]
Posthumous publication of the book Ortus medicinae by Jan Baptist van Helmont, which is cited by some as a major transitional work between alchemy and chemistry, and as an important influence on Robert Boyle. The book contains the results of numerous experiments and establishes an early version of the law of conservation of mass.[31]
Robert Boyle proposes Boyle's law, an experimentally based description of the behavior of gases, specifically the relationship between pressure and volume.[32]
1735
Swedish chemist Georg Brandt analyzes a dark blue pigment found in copper ore. Brandt demonstrated that the pigment contained a new element, later named cobalt.[33][34]
Antoine Lavoisier, considered "The father of modern chemistry",[41] recognizes and names oxygen, and recognizes its importance and role in combustion.[42]
1787
Antoine Lavoisier publishes Méthode de nomenclature chimique, the first modern system of chemical nomenclature.[42]
Antoine Lavoisier publishes Traité Élémentaire de Chimie, the first modern chemistry textbook. It is a complete survey of (at that time) modern chemistry, including the first concise definition of the law of conservation of mass, and thus also represents the founding of the discipline of stoichiometry or quantitative chemical analysis.[42][44]
John Dalton proposes Dalton's law, which describes relationship between the components in a mixture of gases and the relative pressure each contributes to that of the overall mixture.[47]
1805
Joseph Louis Gay-Lussac discovers that water is composed of two parts hydrogen and one part oxygen by volume.[48]
1808
Joseph Louis Gay-Lussac collects and discovers several chemical and physical properties of air and of other gases, including experimental proofs of Boyle's and Charles's laws, and of relationships between density and composition of gases.[49]
1808
John Dalton publishes New System of Chemical Philosophy, which contains first modern scientific description of the atomic theory, and clear description of the law of multiple proportions.[47]
Amedeo Avogadro proposes Avogadro's law, that equal volumes of gases under constant temperature and pressure contain equal number of molecules.[51]
1825
Friedrich Wöhler and Justus von Liebig perform the first confirmed discovery and explanation of isomers, earlier named by Berzelius. Working with cyanic acid and fulminic acid, they correctly deduce that isomerism was caused by differing arrangements of atoms within a molecular structure.[52]
Friedrich Wöhler synthesizes urea, thereby establishing that organic compounds could be produced from inorganic starting materials, disproving the theory of vitalism.[52]
1832
Friedrich Wöhler and Justus von Liebig discover and explain functional groups and radicals in relation to organic chemistry.[52]
1840
Germain Hess proposes Hess's law, an early statement of the law of conservation of energy, which establishes that energy changes in a chemical process depend only on the states of the starting and product materials and not on the specific pathway taken between the two states.[54]
William Henry Perkin synthesizes Perkin's mauve, the first synthetic dye. Created as an accidental byproduct of an attempt to create quinine from coal tar. This discovery is the foundation of the dye synthesis industry, one of the earliest successful chemical industries.[60]
Stanislao Cannizzaro, resurrecting Avogadro's ideas regarding diatomic molecules, compiles a table of atomic weights and presents it at the 1860 Karlsruhe Congress, ending decades of conflicting atomic weights and molecular formulas, and leading to Mendeleev's discovery of the periodic law.[63]
Friedrich August Kekulé von Stradonitz, based partially on the work of Loschmidt and others, establishes structure of benzene as a six carbon ring with alternating single and double bonds.[61]
1865
Adolf von Baeyer begins work on indigo dye, a milestone in modern industrial organic chemistry which revolutionizes the dye industry.[71]
1869
Dmitri Mendeleev publishes the first modern periodic table, with the 66 known elements organized by atomic weights. The strength of his table was its ability to accurately predict the properties of as-yet unknown elements.[65][66]
Ludwig Boltzmann establishes statistical derivations of many important physical and chemical concepts, including entropy, and distributions of molecular velocities in the gas phase.[74]
Jacobus Henricus van 't Hoff publishes Études de Dynamique chimique, a seminal study on chemical kinetics.[76]
1884
Hermann Emil Fischer proposes structure of purine, a key structure in many biomolecules, which he later synthesized in 1898. Also begins work on the chemistry of glucose and related sugars.[77]
Eugen Goldstein names the cathode ray, later discovered to be composed of electrons, and the canal ray, later discovered to be positive hydrogen ions that had been stripped of their electrons in a cathode ray tube. These would later be named protons.[79]
Wilhelm Wien demonstrates that canal rays (streams of positive ions) can be deflected by magnetic fields, and that the amount of deflection is proportional to the mass-to-charge ratio. This discovery would lead to the analytical technique known as mass spectrometry.[83]
Robert Millikan measures the charge of individual electrons with unprecedented accuracy through the oil drop experiment, confirming that all electrons have the same charge and mass.[91]
Antonius van den Broek proposes the idea that the elements on the periodic table are more properly organized by positive nuclear charge rather than atomic weight.[93]
1911
The first Solvay Conference is held in Brussels, bringing together most of the most prominent scientists of the day. Conferences in physics and chemistry continue to be held periodically to this day.[94]
Henry Moseley, working from Van den Broek's earlier idea, introduces concept of atomic number to fix inadequacies of Mendeleev's periodic table, which had been based on atomic weight.[98]
1913
Frederick Soddy proposes the concept of isotopes, that elements with the same chemical properties may have differing atomic weights.[99]
1913
J. J. Thomson expanding on the work of Wien, shows that charged subatomic particles can be separated by their mass-to-charge ratio, a technique known as mass spectrometry.[100]
Wallace Carothers leads a team of chemists at DuPont who invent nylon, one of the most commercially successful synthetic polymers in history.[115]
1937
Carlo Perrier and Emilio Segrè perform the first confirmed synthesis of technetium-97, the first artificially produced element, filling a gap in the periodic table. Though disputed, the element may have been synthesized as early as 1925 by Walter Noddack and others.[116]
1937
Eugene Houdry develops a method of industrial scale catalytic cracking of petroleum, leading to the development of the first modern oil refinery.[117]
Linus Pauling publishes The Nature of the Chemical Bond, a compilation of a decades worth of work on chemical bonding. It is one of the most important modern chemical texts. It explains hybridization theory, covalent bonding and ionic bonding as explained through electronegativity, and resonance as a means to explain, among other things, the structure of benzene.[110]
Glenn T. Seaborg takes over McMillan's work creating new atomic nuclei. Pioneers method of neutron capture and later through other nuclear reactions. Would become the principal or co-discoverer of nine new chemical elements, and dozens of new isotopes of existing elements.[120]
1944
Robert Burns Woodward and William von Eggers Doering successfully synthesized of quinine. This achievement, characterized of fully artificial chemicals as source for synthesis process, opened an era called as "Woodwardian era" or "chemical era" when many drugs and chemicals, as well as organic synthesis methods invented. Due to the growth of chemical industry, many fields has grown, such as drug industry.[121]
Kraus, Paul 1942-1943. Jâbir ibn Hayyân: Contribution à l'histoire des idées scientifiques dans l'Islam. I. Le corpus des écrits jâbiriens. II. Jâbir et la science grecque. Cairo: Institut français d'archéologie orientale, vol. II, p. 1, note 1; Weisser, Ursula 1980. Das Buch über das Geheimnis der Schöpfung von Pseudo-Apollonios von Tyana. Berlin: De Gruyter, p. 199. On the dating and historical background of the Sirr al-khalīqa, see Kraus 1942−1943, vol. II, pp. 270–303; Weisser 1980, pp. 39–72. On the further history of this theory up to the eighteenth century, see Norris, John 2006. “The Mineral Exhalation Theory of Metallogenesis in Pre-Modern Mineral Science” in: Ambix, 53, pp. 43–65.
O'Connor, J. J.; Robertson, E. F. (2003). "Roger Bacon". MacTutor. School of Mathematics and Statistics University of St Andrews, Scotland. Archived from the original on 2008-03-07. Retrieved 2007-03-12.
Newman, William R. 1985. “New Light on the Identity of Geber” in: Sudhoffs Archiv, 69(1), pp. 76-90; Newman, William R. 2001. "Experimental Corpuscular Theory in Aristotelian Alchemy: From Geber to Sennert" in: Christoph Lüthy (ed.). Late Medieval and Early Modern Corpuscular Matter Theories. Leiden: Brill, 2001, pp. 291-329; Newman, William R. 2006. Atoms and Alchemy: Chymistry and the Experimental Origins of the Scientific Revolution. Chicago: University of Chicago Press.
Asarnow, Herman (2005-08-08). "Sir Francis Bacon: Empiricism". An Image-Oriented Introduction to Backgrounds for English Renaissance Literature. University of Portland. Archived from the original on 2007-02-01. Retrieved 2007-02-22.
Crosland, M.P. (1959). "The use of diagrams as chemical 'equations' in the lectures of William Cullen and Joseph Black". Annals of Science. 15 (2): 75–90. doi:10.1080/00033795900200088.
Georg Brandt first showed cobalt to be a new metal in: G. Brandt (1735) "Dissertatio de semimetallis" (Dissertation on semi-metals), Acta Literaria et Scientiarum Sveciae (Journal of Swedish literature and sciences), vol. 4, pages 1–10. See also: (1) G. Brandt (1746) "Rön och anmärkningar angäende en synnerlig färg — cobolt" (Observations and remarks concerning an extraordinary pigment — cobalt), Kongliga Svenska vetenskapsakademiens handlingar (Transactions of the Royal Swedish Academy of Science), vol.7, pages 119–130; (2) G. Brandt (1748) "Cobalti nova species examinata et descripta" (Cobalt, a new element examined and described), Acta Regiae Societatis Scientiarum Upsaliensis (Journal of the Royal Scientific Society of Uppsala), 1st series, vol. 3, pages 33–41; (3) James L. Marshall and Virginia R. Marshall (Spring 2003) "Rediscovery of the Elements: Riddarhyttan, Sweden,"Archived 2010-07-03 at the Wayback MachineThe Hexagon (official journal of the Alpha Chi Sigma fraternity of chemists), vol. 94, no. 1, pages 3–8.
Cooper, Alan (1999). "Joseph Black". History of Glasgow University Chemistry Department. University of Glasgow Department of Chemistry. Archived from the original on 2006-04-10. Retrieved 2006-02-23.
Weisstein, Eric W. (1996). "Lavoisier, Antoine (1743–1794)". Eric Weisstein's World of Scientific Biography. Wolfram Research Products. Retrieved 2007-02-23.
"Proust, Joseph Louis (1754–1826)". 100 Distinguished Chemists. European Association for Chemical and Molecular Science. 2005. Archived from the original on 2008-05-15. Retrieved 2007-02-23.
"Kolbe, Adolph Wilhelm Hermann". 100 Distinguished European Chemists. European Association for Chemical and Molecular Sciences. 2005. Archived from the original on 2008-10-11. Retrieved 2007-03-12.
"Archibald Scott Couper and August Kekulé von Stradonitz". Chemical Achievers: The Human Face of Chemical Sciences. Chemical Heritage Foundation. 2005.
O'Connor, J. J.; Robertson, E.F. (2002). "Gustav Robert Kirchhoff". MacTutor. School of Mathematics and Statistics University of St Andrews, Scotland. Archived from the original on 2009-10-15. Retrieved 2007-03-24.
O'Connor, J. J.; Robertson, E.F. (1997). "Josiah Willard Gibbs". MacTutor. School of Mathematics and Statistics University of St Andrews, Scotland. Archived from the original on 2010-03-27. Retrieved 2007-03-24.
Weisstein, Eric W. (1996). "Boltzmann, Ludwig (1844–1906)". Eric Weisstein's World of Scientific Biography. Wolfram Research Products. Retrieved 2007-03-24.
Weisstein, Eric W. (1996). "Moseley, Henry (1887–1915)". Eric Weisstein's World of Scientific Biography. Wolfram Research Products. Retrieved 2007-03-25.
"Early Mass Spectrometry". A History of Mass Spectrometry. Scripps Center for Mass Spectrometry. 2005. Archived from the original on 2007-03-03. Retrieved 2007-03-26.
Ivor Grattan-Guinness. Companion Encyclopedia of the History and Philosophy of the Mathematical Sciences. Johns Hopkins University Press, 2003, p. 1266.; Jagdish Mehra, Helmut Rechenberg. The Historical Development of Quantum Theory. Springer, 2001, p. 540.
Hannaford, Peter. "Alan Walsh 1916–1998". AAS Biographical Memoirs. Australian Academy of Science. Archived from the original on 2007-02-24. Retrieved 2007-03-26.
G. A. Olah, S. J. Kuhn, W. S. Tolgyesi, E. B. Baker, J. Am. Chem. Soc. 1962, 84, 2733; G. A. Olah, lieu. Chim. (Bucharest), 1962, 7, 1139 (Nenitzescu issue); G. A. Olah, W. S. Tolgyesi, S. J. Kuhn, M. E. Moffatt, I. J. Bastien, E. B. Baker, J. Am. Chem. Soc. 1963, 85, 1328.
Catalyse de transformation des oléfines par les complexes du tungstène. II. Télomérisation des oléfines cycliques en présence d'oléfines acycliques Die Makromolekulare Chemie Volume 141, Issue 1, Date: 9 February 1971, Pages: 161–176 Par Jean-Louis Hérisson, Yves Chauvin doi:10.1002/macp.1971.021410112
Katsuki, Tsutomu (1980). "The first practical method for asymmetric epoxidation". Journal of the American Chemical Society. 102 (18): 5974–5976. doi:10.1021/ja00538a077.
Jacobsen, Eric N. (1988). "Asymmetric dihydroxylation via ligand-accelerated catalysis". Journal of the American Chemical Society. 110 (6): 1968–1970. doi:10.1021/ja00214a053.
Sharpless, K. Barry (1975). "New reaction. Stereospecific vicinal oxyamination of olefins by alkyl imido osmium compounds". Journal of the American Chemical Society. 97 (8): 2305–2307. doi:10.1021/ja00841a071.
Herranz, Eugenio (1978). "Osmium-catalyzed vicinal oxyamination of olefins by N-chloro-N-argentocarbamates". Journal of the American Chemical Society. 100 (11): 3596–3598. doi:10.1021/ja00479a051.
First total synthesis of taxol 1. Functionalization of the B ring Robert A. Holton, Carmen Somoza, Hyeong Baik Kim, Feng Liang, Ronald J. Biediger, P. Douglas Boatman, Mitsuru Shindo, Chase C. Smith, Soekchan Kim, et al.; J. Am. Chem. Soc.; 1994; 116(4); 1597–1598. DOI Abstract
Holton, Robert A. (1994). "First total synthesis of taxol. 2. Completion of the C and D rings". Journal of the American Chemical Society. 116 (4): 1599–1600. doi:10.1021/ja00083a067.