Loading AI tools
Concept in multi-threaded computer programming From Wikipedia, the free encyclopedia
In multi-threaded computer programming, a function is thread-safe when it can be invoked or accessed concurrently by multiple threads without causing unexpected behavior, race conditions, or data corruption.[1][2] As in the multi-threaded context where a program executes several threads simultaneously in a shared address space and each of those threads has access to every other thread's memory, thread-safe functions need to ensure that all those threads behave properly and fulfill their design specifications without unintended interaction.[3]
There are various strategies for making thread-safe data structures.[3]
Different vendors use slightly different terminology for thread-safety,[4] but the most commonly use thread-safety terminology are:[2]
Thread safety guarantees usually also include design steps to prevent or limit the risk of different forms of deadlocks, as well as optimizations to maximize concurrent performance. However, deadlock-free guarantees cannot always be given, since deadlocks can be caused by callbacks and violation of architectural layering independent of the library itself.
Software libraries can provide certain thread-safety guarantees.[5] For example, concurrent reads might be guaranteed to be thread-safe, but concurrent writes might not be. Whether a program using such a library is thread-safe depends on whether it uses the library in a manner consistent with those guarantees.
Below we discuss two classes of approaches for avoiding race conditions to achieve thread-safety.
The first class of approaches focuses on avoiding shared state and includes:
The second class of approaches are synchronization-related, and are used in situations where shared state cannot be avoided:
In the following piece of Java code, the Java keyword synchronized makes the method thread-safe:
class Counter {
private int i = 0;
public synchronized void inc() {
i++;
}
}
In the C programming language, each thread has its own stack. However, a static variable is not kept on the stack; all threads share simultaneous access to it. If multiple threads overlap while running the same function, it is possible that a static variable might be changed by one thread while another is midway through checking it. This difficult-to-diagnose logic error, which may compile and run properly most of the time, is called a race condition. One common way to avoid this is to use another shared variable as a "lock" or "mutex" (from mutual exclusion).
In the following piece of C code, the function is thread-safe, but not reentrant:
# include <pthread.h>
int increment_counter ()
{
static int counter = 0;
static pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
// only allow one thread to increment at a time
pthread_mutex_lock(&mutex);
++counter;
// store value before any other threads increment it further
int result = counter;
pthread_mutex_unlock(&mutex);
return result;
}
In the above, increment_counter
can be called by different threads without any problem since a mutex is used to synchronize all access to the shared counter
variable. But if the function is used in a reentrant interrupt handler and a second interrupt arises while the mutex is locked, the second routine will hang forever. As interrupt servicing can disable other interrupts, the whole system could suffer.
The same function can be implemented to be both thread-safe and reentrant using the lock-free atomics in C++11:
# include <atomic>
int increment_counter ()
{
static std::atomic<int> counter(0);
// increment is guaranteed to be done atomically
int result = ++counter;
return result;
}
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.