Remove ads
From Wikipedia, the free encyclopedia
In geometry, the tetraheptagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of r{4,7}.
Tetraheptagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | (4.7)2 |
Schläfli symbol | r{7,4} or rr{7,7} |
Wythoff symbol | 2 | 7 4 7 7 | 2 |
Coxeter diagram | |
Symmetry group | [7,4], (*742) [7,7], (*772) |
Dual | Order-7-4 rhombille tiling |
Properties | Vertex-transitive edge-transitive |
A half symmetry [1+,4,7] = [7,7] construction exists, which can be seen as two colors of heptagons. This coloring can be called a rhombiheptaheptagonal tiling. |
The dual tiling is made of rhombic faces and has a face configuration V4.7.4.7. |
Uniform heptagonal/square tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [7,4], (*742) | [7,4]+, (742) | [7+,4], (7*2) | [7,4,1+], (*772) | ||||||||
{7,4} | t{7,4} | r{7,4} | 2t{7,4}=t{4,7} | 2r{7,4}={4,7} | rr{7,4} | tr{7,4} | sr{7,4} | s{7,4} | h{4,7} | ||
Uniform duals | |||||||||||
V74 | V4.14.14 | V4.7.4.7 | V7.8.8 | V47 | V4.4.7.4 | V4.8.14 | V3.3.4.3.7 | V3.3.7.3.7 | V77 |
Uniform heptaheptagonal tilings | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry: [7,7], (*772) | [7,7]+, (772) | ||||||||||
= = |
= = |
= = |
= = |
= = |
= = |
= = |
= = | ||||
{7,7} | t{7,7} |
r{7,7} | 2t{7,7}=t{7,7} | 2r{7,7}={7,7} | rr{7,7} | tr{7,7} | sr{7,7} | ||||
Uniform duals | |||||||||||
V77 | V7.14.14 | V7.7.7.7 | V7.14.14 | V77 | V4.7.4.7 | V4.14.14 | V3.3.7.3.7 |
Dimensional family of quasiregular polyhedra and tilings: (7.n)2 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Symmetry *7n2 [n,7] |
Hyperbolic... | Paracompact | Noncompact | ||||||||
*732 [3,7] |
*742 [4,7] |
*752 [5,7] |
*762 [6,7] |
*772 [7,7] |
*872 [8,7]... |
*∞72 [∞,7] |
[iπ/λ,7] | ||||
Coxeter | |||||||||||
Quasiregular figures configuration |
3.7.3.7 |
4.7.4.7 |
7.5.7.5 |
7.6.7.6 |
7.7.7.7 |
7.8.7.8 |
7.∞.7.∞ |
7.∞.7.∞ |
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.