Loading AI tools
Physics project measuring solar neutrino flux From Wikipedia, the free encyclopedia
SAGE (Soviet–American Gallium Experiment, or sometimes Russian-American Gallium Experiment) is a collaborative experiment devised by several prominent physicists to measure the solar neutrino flux.
SAGE was devised to measure the radio-chemical solar neutrino flux based on the inverse beta decay reaction, 71Ga71Ge. The target for the reaction was 50-57 tonnes of liquid gallium metal stored deep (2100 meters) underground at the Baksan Neutrino Observatory in the Caucasus Mountains in Russia. The laboratory containing the SAGE-experiment is called gallium-germanium neutrino telescope (GGNT) laboratory, GGNT being the name of the SAGE experimental apparatus. About once a month, the neutrino induced Ge is extracted from the Ga. 71Ge is unstable with respect to electron capture ( days) and, therefore, the amount of extracted germanium can be determined from its activity as measured in small proportional counters.
The experiment had begun to measure the solar neutrino capture rate with a target of gallium metal in December 1989 and continued to run in August 2011 with only a few brief interruptions in the timespan. As of 2013 is the experiment was described as "being continued"[1] with the latest published data from August 2011. As of 2014 it was stated that the SAGE experiment continues the once-a-month extractions.[2] The SAGE experiment continued in 2016.[3] As of 2017, the SAGE-experiment continues.[4]
The experiment has measured the solar neutrino flux in 168 extractions between January 1990 and December 2007. The result of the experiment based on the whole 1990-2007 set of data is 65.4+3.1
−3.0 (stat.) +2.6
−2.8 (syst.) SNU. This represents only 56%-60% of the capture rate predicted by different Standard Solar Models, which predict 138 SNU. The difference is in agreement with neutrino oscillations.
The collaboration has used a 518 kCi 51Cr neutrino source to test the experimental operation. The energy of these neutrinos is similar to the solar 7Be neutrinos and thus makes an ideal check on the experimental procedure. The extractions for the Cr experiment took place between January and May 1995 and the counting of the samples lasted until fall. The result, expressed in terms of a ratio of the measured production rate to the expected production rate, is 1.0±0.15. This indicates that the discrepancy between the solar model predictions and the SAGE flux measurement cannot be an experimental artifact.
In 2003-2004, a 37Ar neutrino source was made by irradiation of calcium oxide in the BN-600 reactor followed by chemical separation of argon. A calibration experiment with it was performed from April 30th to September 27th. The resulting production of 71Ge was calculated in 2005 to be 79% of expected,[5] confirming an earlier (1998) estimate from one of the experiments on GALLEX (another gave results indistinguishable from 100%, similarly to the Cr experiment on SAGE).[6][7] This discrepancy soon became known as the gallium anomaly.
Following the report of the anomaly in 2006, physicists began to explore potential explanations for the observed deficit. A 2007 analysis[8] examined the data within frameworks of two- and three-neutrino mixing, considering the possibility of electron neutrinos oscillating into a hypothetical sterile neutrino. By 2009, a thorough investigation into potential experimental errors had verified the efficiency of chemical extraction of germanium, counting procedures and data analysis techniques, ruling out significant experimental errors.[9][10] This strengthened the evidence for the anomaly and pushed the focus towards investigating potential new physics beyond the standard three-neutrino model. A 2013 review combined the gallium results with data from reactor antineutrino experiments, arguing for a consistent pattern of electron (anti)neutrino disappearance at short baselines and highlighting the need for more precise measurements and dedicated experiments to definitively confirm or refute the sterile neutrino interpretation.[11]
In 2014, the SAGE-experiment's GGNT-apparatus (gallium-germanium neutrino telescope) was upgraded to perform a very-short-baseline neutrino oscillation experiment BEST (Baksan Experiment on Sterile Transitions) with an intense artificial neutrino source based on 51Cr.[12] In 2017, the BEST apparatus was completed, but the artificial neutrino source was missing.[13] As of 2018, the BEST experiment was underway.[14] As of 2018, a follow-up experiment BEST-2 where the source would be changed to 65Zn was under consideration.[15] It uses two gallium chambers instead of one, to better determine whether the anomaly could be explained by the distance from the source of the neutrinos.[16]
In June 2022, the BEST experiment released two papers observing a 20-24% deficit in the production the isotope germanium expected from the reaction , confirming previous results from SAGE and GALLEX on the so called "gallium anomaly" pointing out that a sterile neutrino explanation can be consistent with the data.[17][18][19] Further work have refined the precision for the cross section of the neutrino capture in 2023[20] which was proposed as a possible inaccuracy source back in 1998[21] as well as half-life of in 2024[22] ruling them out as possible explanations for the anomaly.[16]
SAGE has been led by the following physicists over the course of its history:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.