Curie (unit)

Non-SI unit of radioactivity From Wikipedia, the free encyclopedia

Curie (unit)

The curie (symbol Ci) is a non-SI unit of radioactivity originally defined in 1910. According to a notice in Nature at the time, it was to be named in honour of Pierre Curie,[1] but was considered at least by some to be in honour of Marie Skłodowska-Curie as well,[2] and is in later literature considered to be named for both.[3]

Quick Facts General information, Unit of ...
Curie
Thumb
A sample of radium, the element which was used in the original definition of the curie.
General information
Unit ofActivity
SymbolCi
Named afterPierre Curie and Marie Curie
Conversions
1 Ci in ...... is equal to ...
   rutherfords   37000 Rd
   SI derived unit   37 GBq
   SI base unit   3.7×1010 s−1
Close
Thumb
Sample of cobalt-60 that emits 1 μCi (microcurie) of radioactivity; i.e. 37,000 decays per second.

It was originally defined as "the quantity or mass of radium emanation in equilibrium with one gram of radium (element)",[1] but is currently defined as 1 Ci = 3.7×1010 decays per second[4] after more accurate measurements of the activity of 226Ra (which has a specific activity of 3.66×1010 Bq/g[5]).

In 1975 the General Conference on Weights and Measures gave the becquerel (Bq), defined as one nuclear decay per second, official status as the SI unit of activity.[6] Therefore:

1 Ci = 3.7×1010 Bq = 37 GBq

and

1 Bq ≅ 2.703×10−11 Ci ≅ 27 pCi

While its continued use is discouraged by the National Institute of Standards and Technology (NIST)[7] and other bodies, the curie is still widely used throughout government, industry and medicine in the United States and in other countries.

At the 1910 meeting, which originally defined the curie, it was proposed to make it equivalent to 10 nanograms of radium (a practical amount). But Marie Curie, after initially accepting this, changed her mind and insisted on one gram of radium. According to Bertram Boltwood, Marie Curie thought that "the use of the name 'curie' for so infinitesimally small [a] quantity of anything was altogether inappropriate".[2]

The power emitted in radioactive decay corresponding to one curie can be calculated by multiplying the decay energy by approximately 5.93 mW / MeV.

A radiotherapy machine may have roughly 1000 Ci of a radioisotope such as caesium-137 or cobalt-60. This quantity of radioactivity can produce serious health effects with only a few minutes of close-range, unshielded exposure.

Radioactive decay can lead to the emission of particulate radiation or electromagnetic radiation. Ingesting even small quantities of some particulate emitting radionuclides may be fatal. For example, the median lethal dose (LD-50) for ingested polonium-210 is 240 μCi; about 53.5 nanograms.

The typical human body contains roughly 0.1 μCi (14 mg) of naturally occurring potassium-40. A human body containing 16 kg (35 lb) of carbon (see Composition of the human body) would also have about 24 nanograms or 0.1 μCi of carbon-14. Together, these would result in a total of approximately 0.2 μCi or 7400 decays per second inside the person's body (mostly from beta decay but some from gamma decay).

As a measure of quantity

Summarize
Perspective

Units of activity (the curie and the becquerel) also refer to a quantity of radioactive atoms. Because the probability of decay is a fixed physical quantity, for a known number of atoms of a particular radionuclide, a predictable number will decay in a given time. The number of decays that will occur in one second in one gram of atoms of a particular radionuclide is known as the specific activity of that radionuclide.

The activity of a sample decreases with time because of decay.

The rules of radioactive decay may be used to convert activity to an actual number of atoms. They state that 1 Ci of radioactive atoms would follow the expression

N (atoms) × λ (s−1) = 1 Ci = 3.7 × 1010 Bq,

and so

N = 3.7 × 1010 Bq / λ,

where λ is the decay constant in s−1.

Here are some examples, ordered by half-life:

More information Nuclide, Number of atoms in 1 gram ...
NuclideIsotopic mass (Da)[8]Number of atoms in 1 gramHalf-life[9][a]Specific activity (Ci/g)Mass of 1 curie
209Bi208.98039862.8816773×10212.01×1019 years8.51×10−1711.7 billion tonnes
190Pt189.95994983.1702160×10214.83×1011 years3.90×10−9257 tonnes
147Sm146.91490444.0990673×10211.066×1011 years2.28×10−843.8 tonnes
232Th232.03805362.5953246×10211.405×1010 years1.10×10−7 (0.110 μCi/g)9.12 tonnes
238U238.05078762.5297714×10214.468×109 years3.36×10−7 (0.336 μCi/g)2.98 tonnes
40K39.963998171.50689146×10221.248×109 years7.18×10−6 (7.17 μCi/g)140 kg
235U235.04392812.5621342×10217.038×108 years2.16×10−6 (2.16 μCi/g)463 kg
129I128.90498364.6717672×10211.614×107 years1.72×10−4 (172 μCi/g)5.82 kg
99Tc98.906249686.0887363×10212.111×105 years1.71×10−458.4 g
239Pu239.05216162.5191744×10212.411×104 years6.20×10−216.1 g
240Pu240.05381172.5086628×10216561 years0.2274.41 g
14C14.003241994.30053323×10225700 years4.48223 mg
226Ra226.02540822.6643645×10211600 years0.9891.01 g
241Am241.05682732.4982245×1021432.6 years3.43292 mg
238Pu238.04955822.5297845×102187.7 years17.158.4 mg
137Cs136.90708934.3987063×102130.04 years86.911.5 mg
90Sr89.90772796.6981347×102128.91 years1387.27 mg
241Pu241.05684972.4982243×102114.329 years1049.66 mg
3H3.0160492813201.996698393×102312.32 years9.62×103104 μg
228Ra228.03106862.6409299×10215.75 years2733.67 mg
60Co59.933815541.00479849×10225.2714 years1.13×103884 μg
210Po209.98287372.8679200×1021138.376 days4.49×103223 μg
131I130.90612644.6003506×10218.0249 days1.24×1058.05 μg
123I122.90558984.8998103×102113.2232 hours1.93×106519 ng
212Pb211.99189592.8407410×102110.627 hours1.39×106719 ng
223Fr223.01973422.7002726×102122.00 minutes3.83×10726.1 ng
212Po211.98886802.8407816×1021294.4 nanoseconds1.81×10175.53 ag
Close

The following table shows radiation quantities in SI and non-SI units:

More information Quantity, Unit ...
Ionizing radiation related quantities
Quantity Unit Symbol Derivation Year SI equivalent
Activity (A) becquerel Bq s−1 1974 SI unit
curie Ci 3.7×1010 s−1 1953 3.7×1010 Bq
rutherford Rd 106 s−1 1946 1000000 Bq
Exposure (X) coulomb per kilogram C/kg C⋅kg−1 of air 1974 SI unit
röntgen R esu / 0.001293 g of air 1928 2.58×10−4 C/kg
Absorbed dose (D) gray Gy J⋅kg−1 1974 SI unit
erg per gram erg/g erg⋅g−1 1950 1.0×10−4 Gy
rad rad 100 erg⋅g−1 1953 0.010 Gy
Equivalent dose (H) sievert Sv J⋅kg−1 × WR 1977 SI unit
röntgen equivalent man rem 100 erg⋅g−1 × WR 1971 0.010 Sv
Effective dose (E) sievert Sv J⋅kg−1 × WR × WT 1977 SI unit
röntgen equivalent man rem 100 erg⋅g−1 × WR × WT 1971 0.010 Sv
Close

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.