Sodium trimetaphosphate
Chemical compound From Wikipedia, the free encyclopedia
Sodium trimetaphosphate (also STMP), with formula Na3P3O9, is one of the metaphosphates of sodium. It has the formula Na3P3O9 but the hexahydrate Na3P3O9·(H2O)6 is also well known. It is the sodium salt of trimetaphosphoric acid. It is a colourless solid that finds specialised applications in food and construction industries: it is used as a phosphorylating agent for ascorbic acid to stabilize vitamin C mixtures against thermal decomposition; in the construction industry, sodium trimetaphosphate is used to prevent the shrinkage of gypsum plaster boards (US Pat. 03/0154888) and as a setting retarder for gypsum plaster.[2]
![]() | |
Names | |
---|---|
Other names
Sodium trimetaphosphate | |
Identifiers | |
3D model (JSmol) |
|
ECHA InfoCard | 100.029.171 |
EC Number |
|
PubChem CID |
|
UNII | |
CompTox Dashboard (EPA) |
|
| |
| |
Properties | |
Na3P3O9 | |
Molar mass | 305.885 g/mol |
Appearance | colorless or white crystals |
Density | 2.49 g/cm3 (anhydrous) 1.786 g/cm3 (hexahydrate) |
Melting point | 53 °C (127 °F; 326 K) (hexahydrate, decomposes to anyhdrous) |
22 g/100 mL | |
Solubility | insoluble in alcohol |
Refractive index (nD) |
1.433 (hexahydrate) |
Structure | |
triclinic (hexahydrate) | |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Although drawn with a particular resonance structure, the trianion has high symmetry.[3]

Synthesis and reactions
Trisodium trimetaphosphate is produced industrially by heating sodium dihydrogen phosphate to 550 °C, a method first developed in 1955:[5]
- 3 NaH2PO4 → Na3P3O9 + 3 H2O
The trimetaphosphate dissolves in water and is precipitated by the addition of sodium chloride (common ion effect), affording the hexahydrate.[6] STMP can also prepared by heating samples of sodium polyphosphate,[2] or by a thermal reaction of orthophosphoric acid and sodium chloride at 600°C.[7][8]
- 3 H3PO4 + 3 NaCl → Na3P3O9 + 3 H2O + 3 HCl
Hydrolysis of the ring leads to the acyclic sodium triphosphate:
- Na3P3O9 + H2O → H2Na3P3O10
The analogous reaction of the metatriphosphate anion involves ring-opening by amine nucleophiles.[9]
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.