Sodium cyanate
Chemical compound From Wikipedia, the free encyclopedia
Sodium cyanate is the inorganic compound with the formula NaOCN. A white solid, it is the sodium salt of the cyanate anion.
![]() | |
Identifiers | |
---|---|
3D model (JSmol) |
|
3655041 | |
ChEBI | |
ChEMBL | |
ChemSpider | |
ECHA InfoCard | 100.011.846 |
EC Number |
|
MeSH | C009281 |
PubChem CID |
|
UNII | |
CompTox Dashboard (EPA) |
|
| |
| |
Properties | |
NaOCN | |
Molar mass | 65.01 g/mol |
Appearance | white crystalline solid |
Odor | odorless |
Density | 1.893 g/cm3 |
Melting point | 550 °C (1,022 °F; 823 K) |
11.6 g/100 mL (25 °C) | |
Solubility | ethanol: 0.22 g/100 mL (0 °C) dimethylformamide: 0.05 g/100 mL (25 °C) slightly soluble in ammonia, benzene insoluble in diethyl ether |
Structure | |
body centered rhombohedral | |
Thermochemistry | |
Heat capacity (C) |
86.6 J/mol K |
Std molar entropy (S⦵298) |
119.2 J/mol K |
Std enthalpy of formation (ΔfH⦵298) |
−400 kJ/mol |
Hazards | |
GHS labelling: | |
![]() | |
Warning | |
H302, H412 | |
P264, P270, P273, P301+P312, P330, P501 | |
Lethal dose or concentration (LD, LC): | |
LD50 (median dose) |
1500 mg/kg (rat, oral) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Structure
The anion is described by two resonance structures: N≡C−O− and −N=C=O
The salt adopts a body centered rhombohedral crystal lattice structure (trigonal crystal system) at room temperature.[1]
Preparation
Sodium cyanate is prepared industrially by the reaction of urea with sodium carbonate at elevated temperature.
- 2OC(NH2)2 + Na2CO3 → 2Na(NCO) + CO2 + 2NH3 + H2O
Sodium allophanate is observed as an intermediate:[2]
- H2NC(O)NHCO2Na → NaOCN + NH3 + CO2
It can also be prepared in the laboratory by oxidation of a cyanide in aqueous solution by a mild oxidizing agent such as lead oxide.[3]
Uses and reactions
The main use of sodium cyanate is for steel hardening.[2]
Sodium cyanate is used to produce cyanic acid, often in situ:
- NaOCN + HCl → HOCN + NaCl
This approach is exploited for condensation with amines to give unsymmetrical ureas:
- HOCN + RNH2 → RNHC(O)NH2
Such urea derivatives have a range of biological activity.[4]
See also
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.