Soboleva modified hyperbolic tangent

Mathematical activation function in data analysis From Wikipedia, the free encyclopedia

Soboleva modified hyperbolic tangent

The Soboleva modified hyperbolic tangent, also known as (parametric) Soboleva modified hyperbolic tangent activation function ([P]SMHTAF),[nb 1] is a special S-shaped function based on the hyperbolic tangent, given by

More information ...
Equation Left tail control Right tail control
Close

History

This function was originally proposed as "modified hyperbolic tangent"[nb 1] by Ukrainian scientist Elena V. Soboleva (Елена В. Соболева) as a utility function for multi-objective optimization and choice modelling in decision-making.[1][2][3]

Practical usage

The function has since been introduced into neural network theory and practice.[4]

It was also used in economics for modelling consumption and investment,[5] to approximate current-voltage characteristics of field-effect transistors and light-emitting diodes,[6] to design antenna feeders,[7][predatory publisher] and analyze plasma temperatures and densities in the divertor region of fusion reactors.[8]

Sensitivity to parameters

Summarize
Perspective

Derivative of the function is defined by the formula:

The following conditions are keeping the function limited on y-axes: ac, bd.

A family of recurrence-generated parametric Soboleva modified hyperbolic tangent activation functions (NPSMHTAF, FPSMHTAF) was studied with parameters a = c and b = d.[9] It is worth noting that in this case, the function is not sensitive to flipping the left and right-sides parameters:

More information ...
Equation Left prevalence Right prevalence
Thumb
Thumb
Close

The function is sensitive to ratio of the denominator coefficients and often is used without coefficients in the numerator:

More information , Extremum estimates: ...
Equation Basic chart Scaled function

Extremum estimates:

Thumb
Thumb
Close

With parameters a = b = c = d = 1 the modified hyperbolic tangent function reduces to the conventional tanh(x) function, whereas for a = b = 1 and c = d = 0, the term becomes equal to sinh(x).

See also

Notes

  1. Soboleva proposed the name "modified hyperbolic tangent" (mtanh, mth), but since other authors used this name also for other functions, some authors have started to refer to this function as "Soboleva modified hyperbolic tangent".

References

Further reading

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.