Order-4 octahedral honeycomb

From Wikipedia, the free encyclopedia

Order-4 octahedral honeycomb

The order-4 octahedral honeycomb is a regular paracompact honeycomb in hyperbolic 3-space. It is paracompact because it has infinite vertex figures, with all vertices as ideal points at infinity. Given by Schläfli symbol {3,4,4}, it has four ideal octahedra around each edge, and infinite octahedra around each vertex in a square tiling vertex figure.[1]

Order-4 octahedral honeycomb

Perspective projection view
within Poincaré disk model
TypeHyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbols{3,4,4}
{3,41,1}
Coxeter diagrams


Cells{3,4}
Facestriangle {3}
Edge figuresquare {4}
Vertex figuresquare tiling, {4,4}
DualSquare tiling honeycomb, {4,4,3}
Coxeter groups, [3,4,4]
, [3,41,1]
PropertiesRegular

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Symmetry

A half symmetry construction, [3,4,4,1+], exists as {3,41,1}, with two alternating types (colors) of octahedral cells: .

A second half symmetry is [3,4,1+,4]: .

A higher index sub-symmetry, [3,4,4*], which is index 8, exists with a pyramidal fundamental domain, [((3,∞,3)),((3,∞,3))]: .

This honeycomb contains and that tile 2-hypercycle surfaces, which are similar to the paracompact infinite-order triangular tilings and , respectively:

Thumb
Summarize
Perspective

The order-4 octahedral honeycomb is a regular hyperbolic honeycomb in 3-space, and is one of eleven regular paracompact honeycombs.

There are fifteen uniform honeycombs in the [3,4,4] Coxeter group family, including this regular form.

It is a part of a sequence of honeycombs with a square tiling vertex figure:

More information Space, E3 ...
{p,4,4} honeycombs
Space E3 H3
Form Affine Paracompact Noncompact
Name {2,4,4} {3,4,4} {4,4,4} {5,4,4} {6,4,4} ..{,4,4}
Coxeter













 






Image Thumb Thumb
Cells
{2,4}

{3,4}

{4,4}

{5,4}

{6,4}

{,4}
Close

It a part of a sequence of regular polychora and honeycombs with octahedral cells:

More information {3,4,p} polytopes, Space ...
{3,4,p} polytopes
Space S3 H3
Form Finite Paracompact Noncompact
Name {3,4,3}

 
{3,4,4}


{3,4,5}
{3,4,6}

{3,4,7}
{3,4,8}

... {3,4,}

Image
Vertex
figure

{4,3}

 

{4,4}



{4,5}

{4,6}


{4,7}

{4,8}


{4,}

Close

Rectified order-4 octahedral honeycomb

More information , ...
Rectified order-4 octahedral honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolsr{3,4,4} or t1{3,4,4}
Coxeter diagrams


Cellsr{4,3}
{4,4}
Facestriangle {3}
square {4}
Vertex figureThumb
square prism
Coxeter groups, [3,4,4]
, [3,41,1]
PropertiesVertex-transitive, edge-transitive
Close

The rectified order-4 octahedral honeycomb, t1{3,4,4}, has cuboctahedron and square tiling facets, with a square prism vertex figure.

Thumb

Truncated order-4 octahedral honeycomb

More information , ...
Truncated order-4 octahedral honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolst{3,4,4} or t0,1{3,4,4}
Coxeter diagrams


Cellst{3,4}
{4,4}
Facessquare {4}
hexagon {6}
Vertex figureThumb
square pyramid
Coxeter groups, [3,4,4]
, [3,41,1]
PropertiesVertex-transitive
Close

The truncated order-4 octahedral honeycomb, t0,1{3,4,4}, has truncated octahedron and square tiling facets, with a square pyramid vertex figure.

Thumb

Bitruncated order-4 octahedral honeycomb

The bitruncated order-4 octahedral honeycomb is the same as the bitruncated square tiling honeycomb.

Cantellated order-4 octahedral honeycomb

More information , ...
Cantellated order-4 octahedral honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolsrr{3,4,4} or t0,2{3,4,4}
s2{3,4,4}
Coxeter diagrams

Cellsrr{3,4}
{}x4
r{4,4}
Facestriangle {3}
square {4}
Vertex figureThumb
wedge
Coxeter groups, [3,4,4]
, [3,41,1]
PropertiesVertex-transitive
Close

The cantellated order-4 octahedral honeycomb, t0,2{3,4,4}, has rhombicuboctahedron, cube, and square tiling facets, with a wedge vertex figure.

Thumb

Cantitruncated order-4 octahedral honeycomb

More information , ...
Cantitruncated order-4 octahedral honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolstr{3,4,4} or t0,1,2{3,4,4}
Coxeter diagrams
Cellstr{3,4}
{}x{4}
t{4,4}
Facessquare {4}
hexagon {6}
octagon {8}
Vertex figureThumb
mirrored sphenoid
Coxeter groups, [3,4,4]
, [3,41,1]
PropertiesVertex-transitive
Close

The cantitruncated order-4 octahedral honeycomb, t0,1,2{3,4,4}, has truncated cuboctahedron, cube, and truncated square tiling facets, with a mirrored sphenoid vertex figure.

Thumb

Runcinated order-4 octahedral honeycomb

The runcinated order-4 octahedral honeycomb is the same as the runcinated square tiling honeycomb.

Runcitruncated order-4 octahedral honeycomb

More information ...
Runcitruncated order-4 octahedral honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolst0,1,3{3,4,4}
Coxeter diagrams
Cellst{3,4}
{6}x{}
rr{4,4}
Facessquare {4}
hexagon {6}
octagon {8}
Vertex figureThumb
square pyramid
Coxeter groups, [3,4,4]
PropertiesVertex-transitive
Close

The runcitruncated order-4 octahedral honeycomb, t0,1,3{3,4,4}, has truncated octahedron, hexagonal prism, and square tiling facets, with a square pyramid vertex figure.

Thumb

Runcicantellated order-4 octahedral honeycomb

The runcicantellated order-4 octahedral honeycomb is the same as the runcitruncated square tiling honeycomb.

Omnitruncated order-4 octahedral honeycomb

The omnitruncated order-4 octahedral honeycomb is the same as the omnitruncated square tiling honeycomb.

Snub order-4 octahedral honeycomb

More information Snub order-4 octahedral honeycomb ...
Snub order-4 octahedral honeycomb
TypeParacompact scaliform honeycomb
Schläfli symbolss{3,4,4}
Coxeter diagrams



Cellssquare tiling
icosahedron
square pyramid
Facestriangle {3}
square {4}
Vertex figure
Coxeter groups[4,4,3+]
[41,1,3+]
[(4,4,(3,3)+)]
PropertiesVertex-transitive
Close

The snub order-4 octahedral honeycomb, s{3,4,4}, has Coxeter diagram . It is a scaliform honeycomb, with square pyramid, square tiling, and icosahedron facets.

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.