Square tiling honeycomb

From Wikipedia, the free encyclopedia

Square tiling honeycomb

In the geometry of hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol {4,4,3}, it has three square tilings, {4,4}, around each edge, and six square tilings around each vertex, in a cubic {4,3} vertex figure.[1]

Square tiling honeycomb
TypeHyperbolic regular honeycomb
Paracompact uniform honeycomb
Schläfli symbols{4,4,3}
r{4,4,4}
{41,1,1}
Coxeter diagrams



Cells{4,4}
Facessquare {4}
Edge figuretriangle {3}
Vertex figure
cube, {4,3}
DualOrder-4 octahedral honeycomb
Coxeter groups, [4,4,3]
, [43]
, [41,1,1]
PropertiesRegular

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

Rectified order-4 square tiling

It is also seen as a rectified order-4 square tiling honeycomb, r{4,4,4}:

More information {4,4,4}, r{4,4,4} = {4,4,3} ...
{4,4,4} r{4,4,4} = {4,4,3}
=
Close

Symmetry

The square tiling honeycomb has three reflective symmetry constructions: as a regular honeycomb, a half symmetry construction , and lastly a construction with three types (colors) of checkered square tilings .

It also contains an index 6 subgroup [4,4,3*] ↔ [41,1,1], and a radial subgroup [4,(4,3)*] of index 48, with a right dihedral-angled octahedral fundamental domain, and four pairs of ultraparallel mirrors: .

This honeycomb contains that tile 2-hypercycle surfaces, which are similar to the paracompact order-3 apeirogonal tiling :

Thumb
Summarize
Perspective

The square tiling honeycomb is a regular hyperbolic honeycomb in 3-space. It is one of eleven regular paracompact honeycombs.

There are fifteen uniform honeycombs in the [4,4,3] Coxeter group family, including this regular form, and its dual, the order-4 octahedral honeycomb, {3,4,4}.

The square tiling honeycomb is part of the order-4 square tiling honeycomb family, as it can be seen as a rectified order-4 square tiling honeycomb.

More information [4,4,4] family honeycombs, {4,4,4} ...
Close

It is related to the 24-cell, {3,4,3}, which also has a cubic vertex figure. It is also part of a sequence of honeycombs with square tiling cells:

More information Space, E3 ...
{4,4,p} honeycombs
Space E3 H3
Form Affine Paracompact Noncompact
Name {4,4,2} {4,4,3} {4,4,4} {4,4,5} {4,4,6} ...{4,4,}
Coxeter















Image Thumb Thumb Thumb Thumb Thumb
Vertex
figure

{4,2}

{4,3}

{4,4}

{4,5}

{4,6}

{4,}
Close

Rectified square tiling honeycomb

More information , ...
Rectified square tiling honeycomb
TypeParacompact uniform honeycomb
Semiregular honeycomb
Schläfli symbolsr{4,4,3} or t1{4,4,3}
2r{3,41,1}
r{41,1,1}
Coxeter diagrams


Cells{4,3}
r{4,4}
Facessquare {4}
Vertex figureThumb
triangular prism
Coxeter groups, [4,4,3]
, [3,41,1]
, [41,1,1]
PropertiesVertex-transitive, edge-transitive
Close

The rectified square tiling honeycomb, t1{4,4,3}, has cube and square tiling facets, with a triangular prism vertex figure.

Thumb

It is similar to the 2D hyperbolic uniform triapeirogonal tiling, r{∞,3}, with triangle and apeirogonal faces.

Thumb

Truncated square tiling honeycomb

More information , ...
Truncated square tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolst{4,4,3} or t0,1{4,4,3}
Coxeter diagrams


Cells{4,3}
t{4,4}
Facessquare {4}
octagon {8}
Vertex figureThumb
triangular pyramid
Coxeter groups, [4,4,3]
, [43]
, [41,1,1]
PropertiesVertex-transitive
Close

The truncated square tiling honeycomb, t{4,4,3}, has cube and truncated square tiling facets, with a triangular pyramid vertex figure. It is the same as the cantitruncated order-4 square tiling honeycomb, tr{4,4,4}, .

Thumb

Bitruncated square tiling honeycomb

More information ...
Bitruncated square tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbols2t{4,4,3} or t1,2{4,4,3}
Coxeter diagram
Cellst{4,3}
t{4,4}
Facestriangle {3}
square {4}
octagon {8}
Vertex figureThumb
digonal disphenoid
Coxeter groups, [4,4,3]
PropertiesVertex-transitive
Close

The bitruncated square tiling honeycomb, 2t{4,4,3}, has truncated cube and truncated square tiling facets, with a digonal disphenoid vertex figure.

Thumb

Cantellated square tiling honeycomb

More information ...
Cantellated square tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolsrr{4,4,3} or t0,2{4,4,3}
Coxeter diagrams
Cellsr{4,3}
rr{4,4}
{}x{3}
Facestriangle {3}
square {4}
Vertex figureThumb
isosceles triangular prism
Coxeter groups, [4,4,3]
PropertiesVertex-transitive
Close

The cantellated square tiling honeycomb, rr{4,4,3}, has cuboctahedron, square tiling, and triangular prism facets, with an isosceles triangular prism vertex figure.

Thumb

Cantitruncated square tiling honeycomb

More information ...
Cantitruncated square tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolstr{4,4,3} or t0,1,2{4,4,3}
Coxeter diagram
Cellst{4,3}
tr{4,4}
{}x{3}
Facestriangle {3}
square {4}
octagon {8}
Vertex figureThumb
isosceles triangular pyramid
Coxeter groups, [4,4,3]
PropertiesVertex-transitive
Close

The cantitruncated square tiling honeycomb, tr{4,4,3}, has truncated cube, truncated square tiling, and triangular prism facets, with an isosceles triangular pyramid vertex figure.

Thumb

Runcinated square tiling honeycomb

More information ...
Runcinated square tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolt0,3{4,4,3}
Coxeter diagrams
Cells{3,4}
{4,4}
{}x{4}
{}x{3}
Facestriangle {3}
square {4}
Vertex figureThumb
irregular triangular antiprism
Coxeter groups, [4,4,3]
PropertiesVertex-transitive
Close

The runcinated square tiling honeycomb, t0,3{4,4,3}, has octahedron, triangular prism, cube, and square tiling facets, with an irregular triangular antiprism vertex figure.

Thumb

Runcitruncated square tiling honeycomb

More information ...
Runcitruncated square tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolst0,1,3{4,4,3}
s2,3{3,4,4}
Coxeter diagrams
Cellsrr{4,3}
t{4,4}
{}x{3}
{}x{8}
Facestriangle {3}
square {4}
octagon {8}
Vertex figureThumb
isosceles-trapezoidal pyramid
Coxeter groups, [4,4,3]
PropertiesVertex-transitive
Close

The runcitruncated square tiling honeycomb, t0,1,3{4,4,3}, has rhombicuboctahedron, octagonal prism, triangular prism and truncated square tiling facets, with an isosceles-trapezoidal pyramid vertex figure.

Thumb

Runcicantellated square tiling honeycomb

The runcicantellated square tiling honeycomb is the same as the runcitruncated order-4 octahedral honeycomb.

Omnitruncated square tiling honeycomb

More information ...
Omnitruncated square tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolt0,1,2,3{4,4,3}
Coxeter diagram
Cellstr{4,4}
{}x{6}
{}x{8}
tr{4,3}
Facessquare {4}
hexagon {6}
octagon {8}
Vertex figureThumb
irregular tetrahedron
Coxeter groups, [4,4,3]
PropertiesVertex-transitive
Close

The omnitruncated square tiling honeycomb, t0,1,2,3{4,4,3}, has truncated square tiling, truncated cuboctahedron, hexagonal prism, and octagonal prism facets, with an irregular tetrahedron vertex figure.

Thumb

Omnisnub square tiling honeycomb

More information Omnisnub square tiling honeycomb ...
Omnisnub square tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolh(t0,1,2,3{4,4,3})
Coxeter diagram
Cellssr{4,4}
sr{2,3}
sr{2,4}
sr{4,3}
Facestriangle {3}
square {4}
Vertex figureirregular tetrahedron
Coxeter group[4,4,3]+
PropertiesNon-uniform, vertex-transitive
Close

The alternated omnitruncated square tiling honeycomb (or omnisnub square tiling honeycomb), h(t0,1,2,3{4,4,3}), has snub square tiling, snub cube, triangular antiprism, square antiprism, and tetrahedron cells, with an irregular tetrahedron vertex figure.

Alternated square tiling honeycomb

More information , ...
Alternated square tiling honeycomb
TypeParacompact uniform honeycomb
Semiregular honeycomb
Schläfli symbolh{4,4,3}
hr{4,4,4}
{(4,3,3,4)}
h{41,1,1}
Coxeter diagrams



Cells{4,4}
{4,3}
Facessquare {4}
Vertex figure
cuboctahedron
Coxeter groups, [3,41,1]
[4,1+,4,4] ↔ [,4,4,]
, [(4,4,3,3)]
[1+,41,1,1] ↔ [[6]]
PropertiesVertex-transitive, edge-transitive, quasiregular
Close

The alternated square tiling honeycomb, h{4,4,3}, is a quasiregular paracompact uniform honeycomb in hyperbolic 3-space. It has cube and square tiling facets in a cuboctahedron vertex figure.

Cantic square tiling honeycomb

More information ...
Cantic square tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolh2{4,4,3}
Coxeter diagrams
Cellst{4,4}
r{4,3}
t{4,3}
Facestriangle {3}
square {4}
octagon {8}
Vertex figureThumb
rectangular pyramid
Coxeter groups, [3,41,1]
PropertiesVertex-transitive
Close

The cantic square tiling honeycomb, h2{4,4,3}, is a paracompact uniform honeycomb in hyperbolic 3-space. It has truncated square tiling, truncated cube, and cuboctahedron facets, with a rectangular pyramid vertex figure.

Runcic square tiling honeycomb

More information ...
Runcic square tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolh3{4,4,3}
Coxeter diagrams
Cells{4,4}
r{4,3}
{3,4}
Facestriangle {3}
square {4}
Vertex figureThumb
square frustum
Coxeter groups, [3,41,1]
PropertiesVertex-transitive
Close

The runcic square tiling honeycomb, h3{4,4,3}, is a paracompact uniform honeycomb in hyperbolic 3-space. It has square tiling, rhombicuboctahedron, and octahedron facets in a square frustum vertex figure.

Runcicantic square tiling honeycomb

More information ...
Runcicantic square tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolh2,3{4,4,3}
Coxeter diagrams
Cellst{4,4}
tr{4,3}
t{3,4}
Facessquare {4}
hexagon {6}
octagon {8}
Vertex figureThumb
mirrored sphenoid
Coxeter groups, [3,41,1]
PropertiesVertex-transitive
Close

The runcicantic square tiling honeycomb, h2,3{4,4,3}, , is a paracompact uniform honeycomb in hyperbolic 3-space. It has truncated square tiling, truncated cuboctahedron, and truncated octahedron facets in a mirrored sphenoid vertex figure.

Alternated rectified square tiling honeycomb

More information Alternated rectified square tiling honeycomb ...
Alternated rectified square tiling honeycomb
TypeParacompact uniform honeycomb
Schläfli symbolhr{4,4,3}
Coxeter diagrams
Cells
Faces
Vertex figuretriangular prism
Coxeter groups[4,1+,4,3] = [∞,3,3,∞]
PropertiesNonsimplectic, vertex-transitive
Close

The alternated rectified square tiling honeycomb is a paracompact uniform honeycomb in hyperbolic 3-space.

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.