Loading AI tools
Canadian computer scientist From Wikipedia, the free encyclopedia
Richard S. Sutton FRS FRSC is a Canadian computer scientist. He is a professor of computing science at the University of Alberta and a research scientist at Keen Technologies.[1] Sutton is considered one of the founders of modern computational reinforcement learning,[2] having several significant contributions to the field, including temporal difference learning and policy gradient methods.[3]
Richard S. Sutton | |
---|---|
Nationality | Canadian |
Citizenship | Canadian |
Alma mater | University of Massachusetts Amherst Stanford University |
Known for | Temporal difference learning, Dyna, Options, GQ(λ) |
Awards | AAAI Fellow (2001) President's Award (INNS) (2003) Royal Society of Canada Fellow (2016) |
Scientific career | |
Fields | Artificial Intelligence Reinforcement Learning |
Institutions | University of Alberta |
Thesis | Temporal credit assignment in reinforcement learning (1984) |
Doctoral advisor | Andrew Barto |
Doctoral students | David Silver, Doina Precup |
Website | incompleteideas |
Richard Sutton was born in Ohio, and grew up in Oak Brook, Illinois, a suburb of Chicago.
Sutton received his B.A. in psychology from Stanford University in 1978 before taking an M.S. (1980) and Ph.D. (1984) in computer science from the University of Massachusetts Amherst under the supervision of Andrew Barto. His doctoral dissertation, Temporal Credit Assignment in Reinforcement Learning, introduced actor-critic architectures and temporal credit assignment.[4][3]
He was influenced by Harry Klopf's work in the 1970s, which proposed that supervised learning is insufficient for AI or explaining intelligent behavior, and trial-and-error learning, driven by "hedonic aspects of behavior", is necessary. This focussed his interest to reinforcement learning.[5]
In 1984, Sutton was a postdoctoral researcher at the University of Massachusetts.
From 1985 to 1994, he was a principal member of technical staff in the Computer and Intelligent Systems Laboratory at GTE in Waltham, Massachusetts.[3] After that, he spent 3 years at the University of Massachusetts Amherst as a senior research scientist.[3]
From 1998 to 2002, Sutton worked at the AT&T Shannon Laboratory in Florham Park, New Jersey as principal technical staff member in the artificial intelligence department.[3]
Since 2003, he has been a professor of computing science at the University of Alberta. He led the institution's Reinforcement Learning and Artificial Intelligence Laboratory until 2018.[6][3]
While retaining his professorship, Sutton joined Deepmind in June 2017 as a distinguished research scientist and co-founder of its Edmonton office.[4][7][8]
Sutton became a Canadian citizen in 2015 and renounced his US citizenship[8] in 2017.
In a 2019 essay, Sutton criticized the field of AI research for failing "to learn the bitter lesson that building in how we think we think does not work in the long run", arguing that "70 years of AI research [had shown] that general methods that leverage computation are ultimately the most effective, and by a large margin", beating efforts building on human knowledge about specific fields like computer vision, speech recognition, chess or Go.[9][10]
In 2023 he and John Carmack announced a partnership for the development of AGI.[11]
Sutton is fellow of the Association for the Advancement of Artificial Intelligence (AAAI) since 2001.[12] In 2003 he received the President's Award from the International Neural Network Society[13] and in 2013, the Outstanding Achievement in Research award from the University of Massachusetts Amherst.[14]
Sutton's nomination as a AAAI fellow reads:[12]
For significant contributions to many topics in machine learning, including reinforcement learning, temporal difference techniques, and neural networks.
In 2016, Sutton was elected Fellow of the Royal Society of Canada.[15] In 2021, he was elected Fellow of the Royal Society.[16]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.