Loading AI tools
Ethical practice in scientific research From Wikipedia, the free encyclopedia
Research ethics is a discipline within the study of applied ethics. Its scope ranges from general scientific integrity and misconduct to the treatment of human and animal subjects. The social responsibilities of scientists and researchers are not traditionally included and are less well defined.[1]
You can help expand this article with text translated from the corresponding article in Portuguese. (January 2024) Click [show] for important translation instructions.
|
The discipline is most developed in medical research. Beyond the issues of falsification, fabrication, and plagiarism that arise in every scientific field, research design in human subject research and animal testing are the areas that raise ethical questions most often.
The list of historic cases includes many large-scale violations and crimes against humanity such as Nazi human experimentation and the Tuskegee syphilis experiment which led to international codes of research ethics. No approach has been universally accepted,[2][3][4] but typically cited codes are the 1947 Nuremberg Code, the 1964 Declaration of Helsinki, and the 1978 Belmont Report.
Today, research ethics committees, such as those of the US, UK, and EU, govern and oversee the responsible conduct of research.
Research in other fields such as social sciences, information technology, biotechnology, or engineering may generate ethical concerns.[2][3][5][6][7][8]
This section needs expansion. You can help by adding to it. (March 2024) |
The list of historic cases includes many large scale violations and crimes against humanity such as Nazi human experimentation and the Tuskegee syphilis experiment which led to international codes of research ethics.[2][3][4] Medical ethics developed out of centuries of general malpractice and science motivated only by results. Medical ethics in turn led to today's more broad understanding in bioethics.[9]
Research integrity or scientific integrity is an aspect of research ethics that deals with best practice or rules of professional practice of scientists.
First introduced in the 19th century by Charles Babbage, the concept of research integrity came to the fore in the late 1970s. A series of publicized scandals in the United States led to heightened debate on the ethical norms of sciences and the limitations of the self-regulation processes implemented by scientific communities and institutions. Formalized definitions of scientific misconduct, and codes of conduct, became the main policy response after 1990. In the 21st century, codes of conduct or ethics codes for research integrity are widespread. Along with codes of conduct at institutional and national levels, major international texts include the European Charter for Researchers (2005), the Singapore statement on research integrity (2010), the European Code of Conduct for Research Integrity (2011 & 2017) and the Hong Kong principles for assessing researchers (2020).
Scientific literature on research integrity falls mostly into two categories: first, mapping of the definitions and categories, especially in regard to scientific misconduct, and second, empirical surveys of the attitudes and practices of scientists.[10] Following the development of codes of conduct, taxonomies of non-ethical uses have been significantly expanded, beyond the long-established forms of scientific fraud (plagiarism, falsification and fabrication of results). Definitions of "questionable research practices" and the debate over reproducibility also target a grey area of dubious scientific results, which may not be the outcome of voluntary manipulations.
The concrete impact of codes of conduct and other measures put in place to ensure research integrity remain uncertain. Several case studies have highlighted that while the principles of typical codes of conduct adhere to common scientific ideals, they are seen as remote from actual work practices and their efficiency is criticized.
After 2010, debates on research integrity have been increasingly linked to open science. International codes of conduct and national legislation on research integrity have officially endorsed open sharing of scientific output (publications, data, and code used to perform statistical analyses on the data[clarification needed]) as ways to limit questionable research practices and to enhance reproducibility. Having both the data and the actual code enables others to reproduce the results for themselves (or to uncover problems in the analyses when trying to do so). The European Code of Conduct for Research Integrity 2023 states, for example, the principles that, "Researchers, research institutions, and organisations ensure that access to data is as open as possible, as closed as necessary, and where appropriate in line with the FAIR Principles (Findable, Accessible, Interoperable and Reusable) for data management" and that "Researchers, research institutions, and organisations are transparent about how to access and gain permission to use data,
metadata, protocols, code, software, and other research materials".[11] References to open science have incidentally opened up the debate over scientific integrity beyond academic communities, as it increasingly concerns a wider audience of scientific readers.Scientific misconduct is the violation of the standard codes of scholarly conduct and ethical behavior in the publication of professional scientific research. It is violation of scientific integrity: violation of the scientific method and of research ethics in science, including in the design, conduct, and reporting of research.
A Lancet review on Handling of Scientific Misconduct in Scandinavian countries provides the following sample definitions,[12] reproduced in The COPE report 1999:[13]
The consequences of scientific misconduct can be damaging for perpetrators and journal audience[14][15] and for any individual who exposes it.[16] In addition there are public health implications attached to the promotion of medical or other interventions based on false or fabricated research findings. Scientific misconduct can result in loss of public trust in the integrity of science.[17]
Three percent of the 3,475 research institutions that report to the US Department of Health and Human Services' Office of Research Integrity, indicate some form of scientific misconduct.[18] However the ORI will only investigate allegations of impropriety where research was funded by federal grants. They routinely monitor such research publications for red flags and their investigation is subject to a statute of limitations. Other private organizations like the Committee of Medical Journal Editors (COJE) can only police their own members.[19]Research ethics for Human subject research and Animal testing derives, historically, from Medical ethics and, in modern times, from the much more broad field of Bioethics.
Medical ethics is an applied branch of ethics which analyzes the practice of clinical medicine and related scientific research.[20] Medical ethics is based on a set of values that professionals can refer to in the case of any confusion or conflict. These values include the respect for autonomy, non-maleficence, beneficence, and justice.[21] Such tenets may allow doctors, care providers, and families to create a treatment plan and work towards the same common goal.[22] These four values are not ranked in order of importance or relevance and they all encompass values pertaining to medical ethics.[23] However, a conflict may arise leading to the need for hierarchy in an ethical system, such that some moral elements overrule others with the purpose of applying the best moral judgement to a difficult medical situation.[24] Medical ethics is particularly relevant in decisions regarding involuntary treatment and involuntary commitment.
There are several codes of conduct. The Hippocratic Oath discusses basic principles for medical professionals.[24] This document dates back to the fifth century BCE.[25] Both The Declaration of Helsinki (1964) and The Nuremberg Code (1947) are two well-known and well respected documents contributing to medical ethics. Other important markings in the history of medical ethics include Roe v. Wade[why?] in 1973 and the development of hemodialysis in the 1960s. With hemodialysis now available, but a limited number of dialysis machines to treat patients, an ethical question arose on which patients to treat and which ones not to treat, and which factors to use in making such a decision.[26] More recently, new techniques for gene editing aiming at treating, preventing and curing diseases utilizing gene editing, are raising important moral questions about their applications in medicine and treatments as well as societal impacts on future generations.[27][28]
As this field continues to develop and change throughout history, the focus remains on fair, balanced, and moral thinking across all cultural and religious backgrounds around the world.[29][30] The field of medical ethics encompasses both practical application in clinical settings and scholarly work in philosophy, history, and sociology.
Medical ethics encompasses beneficence, autonomy, and justice as they relate to conflicts such as euthanasia, patient confidentiality, informed consent, and conflicts of interest in healthcare.[31][32][33] In addition, medical ethics and culture are interconnected as different cultures implement ethical values differently, sometimes placing more emphasis on family values and downplaying the importance of autonomy. This leads to an increasing need for culturally sensitive physicians and ethical committees in hospitals and other healthcare settings.[29][30][34]Participants in a clinical trial in clinical research have rights which they expect to be honored, including:[35]
Study participants are entitled to some degree of autonomy in deciding their participation. One measure for safeguarding this right is the use of informed consent for clinical research.[36] Researchers refer to populations with limited autonomy as "vulnerable populations"; these are subjects who may not be able to fairly decide for themselves whether to participate. Examples of vulnerable populations include incarcerated persons, children, prisoners, soldiers, people under detention, migrants, persons exhibiting insanity or any other condition that precludes their autonomy, and to a lesser extent, any population for which there is reason to believe that the research study could seem particularly or unfairly persuasive or misleading. Ethical problems particularly encumber using children in clinical trials.
This section needs expansion. You can help by adding to it. (March 2024) |
Consequences for the environment, for society and for future generations must be considered.
In Canada, mandatory research ethics training is required for students, professors and others who work in research.[39][40] The US first legislated institutional review boards procedures in the 1974 National Research Act.
Published in Social Sciences & Medicine (2009) several authors suggested that research ethics in a medical context is dominated by principlism.[41]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.