Loading AI tools
Change in apparent direction of light rays due to special relativity From Wikipedia, the free encyclopedia
In physics, relativistic aberration is the relativistic version of aberration of light, including relativistic corrections that become significant for observers who move with velocities close to the speed of light, as described by special relativity.
Suppose, in the reference frame of the observer, the source is moving with speed v at an angle θs relative to the vector from the observer to the source at the time when the light is emitted. Then the following formula, which was derived by Albert Einstein in 1905 using Lorentz transformations, describes the aberration of the light source, θo, measured by the observer:[1]
In this circumstance, the rays of light from the source which reach the observer are tilted towards the direction of the source's motion (relative to the observer). It is as if light emitted by a moving object is concentrated conically, towards its direction of motion; an effect called relativistic beaming. Also, light received by a moving object (e.g. the view from a very fast spacecraft) also appears concentrated towards its direction of motion.
A consequence is that a forward observer should normally be expected to intercept a greater proportion of the object's light than a rearward one; this concentration of light in the object's forward direction is referred to as the "searchlight" or "headlight" effect. Light from a relativistic source becomes more forward directed and Doppler shifted with increasing velocity ().
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.