Ramsey class
Class satisfying a generalization of Ramsey's theorem From Wikipedia, the free encyclopedia
Class satisfying a generalization of Ramsey's theorem From Wikipedia, the free encyclopedia
In the area of mathematics known as Ramsey theory, a Ramsey class[1] is one which satisfies a generalization of Ramsey's theorem.
Suppose , and are structures and is a positive integer. We denote by the set of all subobjects of which are isomorphic to . We further denote by the property that for all partitions of there exists a and an such that .
Suppose is a class of structures closed under isomorphism and substructures. We say the class has the A-Ramsey property if for ever positive integer and for every there is a such that holds. If has the -Ramsey property for all then we say is a Ramsey class.
Ramsey's theorem is equivalent to the statement that the class of all finite sets is a Ramsey class.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.