We have the following integral representation for the full two-parameter form of Ramanujan's theta function:[1]
![{\displaystyle f(a,b)=1+\int _{0}^{\infty }{\frac {2ae^{-{\frac {1}{2}}t^{2}}}{\sqrt {2\pi }}}\left[{\frac {1-a{\sqrt {ab}}\cosh \left({\sqrt {\log ab}}\,t\right)}{a^{3}b-2a{\sqrt {ab}}\cosh \left({\sqrt {\log ab}}\,t\right)+1}}\right]dt+\int _{0}^{\infty }{\frac {2be^{-{\frac {1}{2}}t^{2}}}{\sqrt {2\pi }}}\left[{\frac {1-b{\sqrt {ab}}\cosh \left({\sqrt {\log ab}}\,t\right)}{ab^{3}-2b{\sqrt {ab}}\cosh \left({\sqrt {\log ab}}\,t\right)+1}}\right]dt}](//wikimedia.org/api/rest_v1/media/math/render/svg/d833a850026ea49ed8e8cc14e0c5c319ff52dace)
The special cases of Ramanujan's theta functions given by φ(q) := f(q, q) OEIS: A000122 and ψ(q) := f(q, q3) OEIS: A010054 [2] also have the following integral representations:[1]
![{\displaystyle {\begin{aligned}\varphi (q)&=1+\int _{0}^{\infty }{\frac {e^{-{\frac {1}{2}}t^{2}}}{\sqrt {2\pi }}}\left[{\frac {4q\left(1-q^{2}\cosh \left({\sqrt {2\log q}}\,t\right)\right)}{q^{4}-2q^{2}\cosh \left({\sqrt {2\log q}}\,t\right)+1}}\right]dt\\[6pt]\psi (q)&=\int _{0}^{\infty }{\frac {2e^{-{\frac {1}{2}}t^{2}}}{\sqrt {2\pi }}}\left[{\frac {1-{\sqrt {q}}\cosh \left({\sqrt {\log q}}\,t\right)}{q-2{\sqrt {q}}\cosh \left({\sqrt {\log q}}\,t\right)+1}}\right]dt\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/7d958638c9c5c21543a41751082961c3959ca16b)
This leads to several special case integrals for constants defined by these functions when q := e−kπ (cf. theta function explicit values). In particular, we have that [1]
![{\displaystyle {\begin{aligned}\varphi \left(e^{-k\pi }\right)&=1+\int _{0}^{\infty }{\frac {e^{-{\frac {1}{2}}t^{2}}}{\sqrt {2\pi }}}\left[{\frac {4e^{k\pi }\left(e^{2k\pi }-\cos \left({\sqrt {2\pi k}}\,t\right)\right)}{e^{4k\pi }-2e^{2k\pi }\cos \left({\sqrt {2\pi k}}\,t\right)+1}}\right]dt\\[6pt]{\frac {\pi ^{\frac {1}{4}}}{\Gamma \left({\frac {3}{4}}\right)}}&=1+\int _{0}^{\infty }{\frac {e^{-{\frac {1}{2}}t^{2}}}{\sqrt {2\pi }}}\left[{\frac {4e^{\pi }\left(e^{2\pi }-\cos \left({\sqrt {2\pi }}\,t\right)\right)}{e^{4\pi }-2e^{2\pi }\cos \left({\sqrt {2\pi }}\,t\right)+1}}\right]dt\\[6pt]{\frac {\pi ^{\frac {1}{4}}}{\Gamma \left({\frac {3}{4}}\right)}}\cdot {\frac {\sqrt {2+{\sqrt {2}}}}{2}}&=1+\int _{0}^{\infty }{\frac {e^{-{\frac {1}{2}}t^{2}}}{\sqrt {2\pi }}}\left[{\frac {4e^{2\pi }\left(e^{4\pi }-\cos \left(2{\sqrt {\pi }}\,t\right)\right)}{e^{8\pi }-2e^{4\pi }\cos \left(2{\sqrt {\pi }}\,t\right)+1}}\right]dt\\[6pt]{\frac {\pi ^{\frac {1}{4}}}{\Gamma \left({\frac {3}{4}}\right)}}\cdot {\frac {\sqrt {1+{\sqrt {3}}}}{2^{\frac {1}{4}}3^{\frac {3}{8}}}}&=1+\int _{0}^{\infty }{\frac {e^{-{\frac {1}{2}}t^{2}}}{\sqrt {2\pi }}}\left[{\frac {4e^{3\pi }\left(e^{6\pi }-\cos \left({\sqrt {6\pi }}\,t\right)\right)}{e^{12\pi }-2e^{6\pi }\cos \left({\sqrt {6\pi }}\,t\right)+1}}\right]dt\\[6pt]{\frac {\pi ^{\frac {1}{4}}}{\Gamma \left({\frac {3}{4}}\right)}}\cdot {\frac {\sqrt {5+2{\sqrt {5}}}}{5^{\frac {3}{4}}}}&=1+\int _{0}^{\infty }{\frac {e^{-{\frac {1}{2}}t^{2}}}{\sqrt {2\pi }}}\left[{\frac {4e^{5\pi }\left(e^{10\pi }-\cos \left({\sqrt {10\pi }}\,t\right)\right)}{e^{20\pi }-2e^{10\pi }\cos \left({\sqrt {10\pi }}\,t\right)+1}}\right]dt\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/c3031f986c5ca7b5f2e2295b80296f8011cec02b)
and that
![{\displaystyle {\begin{aligned}\psi \left(e^{-k\pi }\right)&=\int _{0}^{\infty }{\frac {e^{-{\frac {1}{2}}t^{2}}}{\sqrt {2\pi }}}\left[{\frac {\cos \left({\sqrt {k\pi }}\,t\right)-e^{\frac {k\pi }{2}}}{\cos \left({\sqrt {k\pi }}\,t\right)-\cosh {\frac {k\pi }{2}}}}\right]dt\\[6pt]{\frac {\pi ^{\frac {1}{4}}}{\Gamma \left({\frac {3}{4}}\right)}}\cdot {\frac {e^{\frac {\pi }{8}}}{2^{\frac {5}{8}}}}&=\int _{0}^{\infty }{\frac {e^{-{\frac {1}{2}}t^{2}}}{\sqrt {2\pi }}}\left[{\frac {\cos \left({\sqrt {\pi }}\,t\right)-e^{\frac {\pi }{2}}}{\cos \left({\sqrt {\pi }}\,t\right)-\cosh {\frac {\pi }{2}}}}\right]dt\\[6pt]{\frac {\pi ^{\frac {1}{4}}}{\Gamma \left({\frac {3}{4}}\right)}}\cdot {\frac {e^{\frac {\pi }{4}}}{2^{\frac {5}{4}}}}&=\int _{0}^{\infty }{\frac {e^{-{\frac {1}{2}}t^{2}}}{\sqrt {2\pi }}}\left[{\frac {\cos \left({\sqrt {2\pi }}\,t\right)-e^{\pi }}{\cos \left({\sqrt {2\pi }}\,t\right)-\cosh \pi }}\right]dt\\[6pt]{\frac {\pi ^{\frac {1}{4}}}{\Gamma \left({\frac {3}{4}}\right)}}\cdot {\frac {{\sqrt[{4}]{1+{\sqrt {2}}}}\,e^{\frac {\pi }{16}}}{2^{\frac {7}{16}}}}&=\int _{0}^{\infty }{\frac {e^{-{\frac {1}{2}}t^{2}}}{\sqrt {2\pi }}}\left[{\frac {\cos \left({\sqrt {\frac {\pi }{2}}}\,t\right)-e^{\frac {\pi }{4}}}{\cos \left({\sqrt {\frac {\pi }{2}}}\,t\right)-\cosh {\frac {\pi }{4}}}}\right]dt\end{aligned}}}](//wikimedia.org/api/rest_v1/media/math/render/svg/37ae89a40223719a2eb7a92b180785ac7bbe090d)