QM-AM-GM-HM inequalities
Mathematical relationships From Wikipedia, the free encyclopedia
In mathematics, the QM-AM-GM-HM inequalities, also known as the mean inequality chain, state the relationship between the harmonic mean, geometric mean, arithmetic mean, and quadratic mean (also known as root mean square). Suppose that are positive real numbers. Then
![]() | It has been suggested that AM–GM inequality be merged into this article. (Discuss) Proposed since March 2025. |
This article needs additional citations for verification. (November 2023) |
In other words, QM≥AM≥GM≥HM. These inequalities often appear in mathematical competitions and have applications in many fields of science.[citation needed]
Proof
Summarize
Perspective
There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.
AM-QM inequality
From the Cauchy–Schwarz inequality on real numbers, setting one vector to (1, 1, ...):
- hence . For positive the square root of this gives the inequality.
HM-GM inequality
The reciprocal of the harmonic mean is the arithmetic mean of the reciprocals , and it exceeds by the AM-GM inequality. implies the inequality:
The n = 2 case
Summarize
Perspective

When n = 2, the inequalities become
- for all [3]
which can be visualized in a semi-circle whose diameter is [AB] and center D.
Suppose AC = x1 and BC = x2. Construct perpendiculars to [AB] at D and C respectively. Join [CE] and [DF] and further construct a perpendicular [CG] to [DF] at G. Then the length of GF can be calculated to be the harmonic mean, CF to be the geometric mean, DE to be the arithmetic mean, and CE to be the quadratic mean. The inequalities then follow easily by the Pythagorean theorem.

See also
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.