Pyruvate decarboxylation or pyruvate oxidation, also known as the link reaction (or oxidative decarboxylation of pyruvate[1]), is the conversion of pyruvate into acetyl-CoA by the enzyme complex pyruvate dehydrogenase complex.[2][3]

Thumb
Pyruvate dehydrogenase complex reaction

The reaction may be simplified as:

Pyruvate + NAD+ + CoA → Acetyl-CoA + NADH + CO2

Pyruvate oxidation is the step that connects glycolysis and the Krebs cycle.[4] In glycolysis, a single glucose molecule (6 carbons) is split into 2 pyruvates (3 carbons each). Because of this, the link reaction occurs twice for each glucose molecule to produce a total of 2 acetyl-CoA molecules, which can then enter the Krebs cycle.

Energy-generating ions and molecules, such as amino acids and carbohydrates, enter the Krebs cycle as acetyl coenzyme A and oxidize in the cycle.[5] The pyruvate dehydrogenase complex (PDC) catalyzes the decarboxylation of pyruvate, resulting in the synthesis of acetyl-CoA, CO2, and NADH. In eukaryotes, this enzyme complex regulates pyruvate metabolism, and ensures homeostasis of glucose during absorptive and post-absorptive state metabolism.[6] As the Krebs cycle occurs in the mitochondrial matrix, the pyruvate generated during glycolysis in the cytosol is transported across the inner mitochondrial membrane by a pyruvate carrier under aerobic conditions.[citation needed]

References

Wikiwand in your browser!

Seamless Wikipedia browsing. On steroids.

Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.

Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.