In directional statistics, the projected normal distribution (also known as offset normal distribution, angular normal distribution or angular Gaussian distribution)[1] is a probability distribution over directions that describes the radial projection of a random variable with n-variate normal distribution over the unit (n-1)-sphere.
The density of the projected normal distribution can be constructed from the density of its generator n-variate normal distribution by re-parametrising to n-dimensional spherical coordinates and then integrating over the radial coordinate.
In spherical coordinates with radial component and angles , a point can be written as , with . The joint density becomes
and the density of can then be obtained as[5]
The same density had been previously obtained in Pukkila and Rao (1988, Eq. (2.4)) using a different notation.
Circular distribution
Parametrising the position on the unit circle in polar coordinates as , the density function can be written with respect to the parameters and of the initial normal distribution as
where and are the density and cumulative distribution of a standard normal distribution, , and is the indicator function.[3]
In the circular case, if the mean vector is parallel to the eigenvector associated to the largest eigenvalue of the covariance, the distribution is symmetric and has a mode at and either a mode or an antimode at , where is the polar angle of . If the mean is parallel to the eigenvector associated to the smallest eigenvalue instead, the distribution is also symmetric but has either a mode or an antimode at and an antimode at .[6]
Spherical distribution
Parametrising the position on the unit sphere in spherical coordinates as where are the azimuth and inclination angles respectively, the density function becomes
where , , , and have the same meaning as the circular case.[7]