Loading AI tools
Energy–frequency relation in quantum mechanics From Wikipedia, the free encyclopedia
The Planck relation[1][2][3] (referred to as Planck's energy–frequency relation,[4] the Planck–Einstein relation,[5] Planck equation,[6] and Planck formula,[7] though the latter might also refer to Planck's law[8][9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: The constant of proportionality, h, is known as the Planck constant. Several equivalent forms of the relation exist, including in terms of angular frequency ω: where . Written using the symbol f for frequency, the relation is
The relation accounts for the quantized nature of light and plays a key role in understanding phenomena such as the photoelectric effect and black-body radiation (where the related Planck postulate can be used to derive Planck's law).
Light can be characterized using several spectral quantities, such as frequency ν, wavelength λ, wavenumber , and their angular equivalents (angular frequency ω, angular wavelength y, and angular wavenumber k). These quantities are related through so the Planck relation can take the following "standard" forms: as well as the following "angular" forms:
The standard forms make use of the Planck constant h. The angular forms make use of the reduced Planck constant ħ = h/2π. Here c is the speed of light.
The de Broglie relation,[10][11][12] also known as de Broglie's momentum–wavelength relation,[4] generalizes the Planck relation to matter waves. Louis de Broglie argued that if particles had a wave nature, the relation E = hν would also apply to them, and postulated that particles would have a wavelength equal to λ = h/p. Combining de Broglie's postulate with the Planck–Einstein relation leads to or
The de Broglie relation is also often encountered in vector form where p is the momentum vector, and k is the angular wave vector.
Bohr's frequency condition[13] states that the frequency of a photon absorbed or emitted during an electronic transition is related to the energy difference (ΔE) between the two energy levels involved in the transition:[14]
This is a direct consequence of the Planck–Einstein relation.
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.