Pareto front
Set of all Pareto efficient situations From Wikipedia, the free encyclopedia
In multi-objective optimization, the Pareto front (also called Pareto frontier or Pareto curve) is the set of all Pareto efficient solutions.[1] The concept is widely used in engineering.[2]: 111–148 It allows the designer to restrict attention to the set of efficient choices, and to make tradeoffs within this set, rather than considering the full range of every parameter.[3]: 63–65 [4]: 399–412


Definition
The Pareto frontier, P(Y), may be more formally described as follows. Consider a system with function , where X is a compact set of feasible decisions in the metric space , and Y is the feasible set of criterion vectors in , such that .
We assume that the preferred directions of criteria values are known. A point is preferred to (strictly dominates) another point , written as . The Pareto frontier is thus written as:
Marginal rate of substitution
Summarize
Perspective
A significant aspect of the Pareto frontier in economics is that, at a Pareto-efficient allocation, the marginal rate of substitution is the same for all consumers.[5] A formal statement can be derived by considering a system with m consumers and n goods, and a utility function of each consumer as where is the vector of goods, both for all i. The feasibility constraint is for . To find the Pareto optimal allocation, we maximize the Lagrangian:
where and are the vectors of multipliers. Taking the partial derivative of the Lagrangian with respect to each good for and gives the following system of first-order conditions:
where denotes the partial derivative of with respect to . Now, fix any and . The above first-order condition imply that
Thus, in a Pareto-optimal allocation, the marginal rate of substitution must be the same for all consumers.[citation needed]
Computation
Algorithms for computing the Pareto frontier of a finite set of alternatives have been studied in computer science and power engineering.[6] They include:
Approximations
Since generating the entire Pareto front is often computationally-hard, there are algorithms for computing an approximate Pareto-front. For example, Legriel et al.[17] call a set S an ε-approximation of the Pareto-front P, if the directed Hausdorff distance between S and P is at most ε. They observe that an ε-approximation of any Pareto front P in d dimensions can be found using (1/ε)d queries.
Zitzler, Knowles and Thiele[18] compare several algorithms for Pareto-set approximations on various criteria, such as invariance to scaling, monotonicity, and computational complexity.
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.