Loading AI tools
From Wikipedia, the free encyclopedia
Optical transfection is a biomedical technique that entails introducing nucleic acids (i.e. genetic material such as DNA) into cells using light. All cells are surrounded by a plasma membrane, which prevents many substances from entering or exiting the cell. Lasers can be used to burn a tiny hole in this membrane, allowing substances to enter. This is tremendously useful to biologists who are studying disease, as a common experimental requirement is to put things (such as DNA) into cells.
This article may be too technical for most readers to understand. (June 2009) |
Typically, a laser is focussed to a diffraction limited spot (~1 μm diameter) using a high numerical aperture microscope objective. The plasma membrane of a cell is then exposed to this highly focussed light for a small amount of time (typically tens of milliseconds to seconds), generating a transient pore on the membrane. The generation of a photopore[check spelling] allows exogenous plasmid DNA, RNA, organic fluorophores, or larger objects such as semiconductor quantum nanodots to enter the cell. In this technique, one cell at a time is treated, making it particularly useful for single cell analysis.
This technique was first demonstrated in 1984 by Tsukakoshi et al., who used a frequency tripled Nd:YAG to generate stable and transient transfection of normal rat kidney cells.[1] Since this time, the optical transfection of a host of mammalian cell types has been demonstrated using a variety of laser sources, including the 405 nm continuous wave (cw),[2] 488 nm cw,[3] or pulsed sources such as the 800 nm femtosecond pulsed Ti:Sapphire[4][5][6][7][8][9][10][11][12][13] or 1064 nm nanosecond pulsed Nd:YAG.[14][15]
The meaning of the term transfection has evolved.[16] The original meaning of transfection was "infection by transformation", i.e. introduction of DNA (or RNA) from a prokaryote-infecting virus or bacteriophage into cells, resulting in an infection. Because the term transformation had another sense in animal cell biology (a genetic change allowing long-term propagation in culture, or acquisition of properties typical of cancer cells), the term transfection acquired, for animal cells, its present meaning of a change in cell properties caused by introduction of DNA (or other nucleic acid species such as RNA or SiRNA).
Because of this strict definition of transfection, optical transfection also refers only to the introduction of nucleic acid species. The introduction of other impermeable compounds into a cell, such as organic fluorophores or semiconductor quantum nanodots is not strictly speaking "transfection," and is therefore referred to as "optical injection" or one of the many other terms now outlined.
The lack of a unified name for this technology makes reviewing the literature on the subject very difficult.[17] Optical injection has been described using over a dozen different names or phrases (see bulleted lists below). Some trends in the literature are clear. The first term of the technique is invariably a derivation of word laser, optical, or photo, and the second term is usually in reference to injection, transfection, poration, perforation or puncture. Like many cellular perturbations, when a single cell or group of cells is treated with a laser, three things can happen: the cell dies (overdose), the cell membrane is permeabilised, substances enter, and the cell recovers (therapeutic dose), or nothing happens (underdose). There have been suggestions in the literature to reserve the term optoinjection for when a therapeutic dose is delivered upon a single cell,[18][19][20] and the term optoporation for when a laser generated shockwave treats a cluster of many (10s to 100s) cells.[18][19][14][20] The first definition of optoinjection is uncontroversial. The definition of optoporation, however, has failed to be adopted, with a similar number of references using the term to denote the dosing of single cells[3][5][15][21] as those using the term to denote the simultaneous dosing of clusters of many cells [18][19][14][20]
As the field stands, it is the opinion of the authors of a review article on the subject[17] that the term optoinjection always be included as a keyword in future publications, regardless of their own naming preferences.
Terms agreed by consensus
Terms under deliberation
Some of the above was reproduced with permission from.[17]
A typical optical transfection protocol is as follows:[11] 1) Build an optical tweezers system with a high NA objective 2) Culture cells to 50-60% confluency 3) Expose cells to at least 10 μg/mL of plasmid DNA 4) Dose the plasma membrane of each cell with 10-40 ms of focussed laser, at a power of <100 mW at focus 5) Observe transient transfection 24-96h later 6) Add selective medium if the generation of stable colonies is desired
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.