Remove ads
A function that sends open (resp. closed) subsets to open (resp. closed) subsets From Wikipedia, the free encyclopedia
In mathematics, more specifically in topology, an open map is a function between two topological spaces that maps open sets to open sets.[1][2][3] That is, a function is open if for any open set in the image is open in Likewise, a closed map is a function that maps closed sets to closed sets.[3][4] A map may be open, closed, both, or neither;[5] in particular, an open map need not be closed and vice versa.[6]
Open[7] and closed[8] maps are not necessarily continuous.[4] Further, continuity is independent of openness and closedness in the general case and a continuous function may have one, both, or neither property;[3] this fact remains true even if one restricts oneself to metric spaces.[9] Although their definitions seem more natural, open and closed maps are much less important than continuous maps. Recall that, by definition, a function is continuous if the preimage of every open set of is open in [2] (Equivalently, if the preimage of every closed set of is closed in ).
Early study of open maps was pioneered by Simion Stoilow and Gordon Thomas Whyburn.[10]
If is a subset of a topological space then let and (resp. ) denote the closure (resp. interior) of in that space. Let be a function between topological spaces. If is any set then is called the image of under
There are two different competing, but closely related, definitions of "open map" that are widely used, where both of these definitions can be summarized as: "it is a map that sends open sets to open sets." The following terminology is sometimes used to distinguish between the two definitions.
A map is called a
Every strongly open map is a relatively open map. However, these definitions are not equivalent in general.
A surjective map is relatively open if and only if it is strongly open; so for this important special case the definitions are equivalent. More generally, a map is relatively open if and only if the surjection is a strongly open map.
Because is always an open subset of the image of a strongly open map must be an open subset of its codomain In fact, a relatively open map is a strongly open map if and only if its image is an open subset of its codomain. In summary,
By using this characterization, it is often straightforward to apply results involving one of these two definitions of "open map" to a situation involving the other definition.
The discussion above will also apply to closed maps if each instance of the word "open" is replaced with the word "closed".
A map is called an open map or a strongly open map if it satisfies any of the following equivalent conditions:
If is a basis for then the following can be appended to this list:
A map is called a relatively closed map if whenever is a closed subset of the domain then is a closed subset of 's image where as usual, this set is endowed with the subspace topology induced on it by 's codomain
A map is called a closed map or a strongly closed map if it satisfies any of the following equivalent conditions:
A surjective map is strongly closed if and only if it is relatively closed. So for this important special case, the two definitions are equivalent. By definition, the map is a relatively closed map if and only if the surjection is a strongly closed map.
If in the open set definition of "continuous map" (which is the statement: "every preimage of an open set is open"), both instances of the word "open" are replaced with "closed" then the statement of results ("every preimage of a closed set is closed") is equivalent to continuity. This does not happen with the definition of "open map" (which is: "every image of an open set is open") since the statement that results ("every image of a closed set is closed") is the definition of "closed map", which is in general not equivalent to openness. There exist open maps that are not closed and there also exist closed maps that are not open. This difference between open/closed maps and continuous maps is ultimately due to the fact that for any set only is guaranteed in general, whereas for preimages, equality always holds.
The function defined by is continuous, closed, and relatively open, but not (strongly) open. This is because if is any open interval in 's domain that does not contain then where this open interval is an open subset of both and However, if is any open interval in that contains then which is not an open subset of 's codomain but is an open subset of Because the set of all open intervals in is a basis for the Euclidean topology on this shows that is relatively open but not (strongly) open.
If has the discrete topology (that is, all subsets are open and closed) then every function is both open and closed (but not necessarily continuous). For example, the floor function from to is open and closed, but not continuous. This example shows that the image of a connected space under an open or closed map need not be connected.
Whenever we have a product of topological spaces the natural projections are open[12][13] (as well as continuous). Since the projections of fiber bundles and covering maps are locally natural projections of products, these are also open maps. Projections need not be closed however. Consider for instance the projection on the first component; then the set is closed in but is not closed in However, for a compact space the projection is closed. This is essentially the tube lemma.
To every point on the unit circle we can associate the angle of the positive -axis with the ray connecting the point with the origin. This function from the unit circle to the half-open interval [0,2π) is bijective, open, and closed, but not continuous. It shows that the image of a compact space under an open or closed map need not be compact. Also note that if we consider this as a function from the unit circle to the real numbers, then it is neither open nor closed. Specifying the codomain is essential.
Every homeomorphism is open, closed, and continuous. In fact, a bijective continuous map is a homeomorphism if and only if it is open, or equivalently, if and only if it is closed.
The composition of two (strongly) open maps is an open map and the composition of two (strongly) closed maps is a closed map.[14][15] However, the composition of two relatively open maps need not be relatively open and similarly, the composition of two relatively closed maps need not be relatively closed. If is strongly open (respectively, strongly closed) and is relatively open (respectively, relatively closed) then is relatively open (respectively, relatively closed).
Let be a map. Given any subset if is a relatively open (respectively, relatively closed, strongly open, strongly closed, continuous, surjective) map then the same is true of its restriction to the -saturated subset
The categorical sum of two open maps is open, or of two closed maps is closed.[15] The categorical product of two open maps is open, however, the categorical product of two closed maps need not be closed.[14][15]
A bijective map is open if and only if it is closed. The inverse of a bijective continuous map is a bijective open/closed map (and vice versa). A surjective open map is not necessarily a closed map, and likewise, a surjective closed map is not necessarily an open map. All local homeomorphisms, including all coordinate charts on manifolds and all covering maps, are open maps.
Closed map lemma — Every continuous function from a compact space to a Hausdorff space is closed and proper (meaning that preimages of compact sets are compact).
A variant of the closed map lemma states that if a continuous function between locally compact Hausdorff spaces is proper then it is also closed.
In complex analysis, the identically named open mapping theorem states that every non-constant holomorphic function defined on a connected open subset of the complex plane is an open map.
The invariance of domain theorem states that a continuous and locally injective function between two -dimensional topological manifolds must be open.
Invariance of domain — If is an open subset of and is an injective continuous map, then is open in and is a homeomorphism between and
In functional analysis, the open mapping theorem states that every surjective continuous linear operator between Banach spaces is an open map. This theorem has been generalized to topological vector spaces beyond just Banach spaces.
A surjective map is called an almost open map if for every there exists some such that is a point of openness for which by definition means that for every open neighborhood of is a neighborhood of in (note that the neighborhood is not required to be an open neighborhood). Every surjective open map is an almost open map but in general, the converse is not necessarily true. If a surjection is an almost open map then it will be an open map if it satisfies the following condition (a condition that does not depend in any way on 's topology ):
If the map is continuous then the above condition is also necessary for the map to be open. That is, if is a continuous surjection then it is an open map if and only if it is almost open and it satisfies the above condition.
If is a continuous map that is also open or closed then:
In the first two cases, being open or closed is merely a sufficient condition for the conclusion that follows. In the third case, it is necessary as well.
If is a continuous (strongly) open map, and then:
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.