Ol Doinyo Lengai
Active volcano in Arusha Region, Tanzania From Wikipedia, the free encyclopedia
Ol Doinyo Lengai is an active volcano in northern Tanzania. It consists of a volcanic cone with two craters, the northern of which has erupted during historical time. Uniquely for volcanoes on Earth, it has erupted natrocarbonatite,[2] an unusually low temperature and highly fluid type of magma. Eruptions in 2007–2008 affected the surrounding region.
Ol Doinyo Lengai | |
---|---|
Oldoinyo Lengai | |
![]() | |
Highest point | |
Elevation | 2,962 m (9,718 ft)[1] |
Prominence | 1,360 m (4,460 ft) |
Isolation | 16.68 km (10.36 mi) |
Coordinates | 2.764°S 35.914°E[1] |
Geography | |
Parent range | East African Rift |
Geology | |
Mountain type | Stratovolcano |
Last eruption | 2024 AD |
Name
The Maasai and Sonjo people refer to the volcano as "The Mountain of God", associated with a myth of the abode of the god Engai, who withdrew there after being hit by a hunter with an arrow.[3] Other names are Basanjo, Donjo Ngai, Duenjo Ngai, Mongogogura, Mungogo wa Bogwe, and Oldonyo L'Engai.[4]
Geography and geomorphology
Summarize
Perspective
Ol Doinyo Lengai lies in the Arusha region of Tanzania,[5] 16 kilometres (9.9 mi) south of Lake Natron[6] and 120 kilometres (75 mi) northwest of the city of Arusha.[7] The summit was first explored between 1904 and 1915.[8] As of 2012[update], about 300,000 people live in the region, and livestock farming is the most important economic activity, although tourism is increasingly important.[9]
Ol Doinyo Lengai is a symmetric cone[1] that rises more than 1,800 metres (5,900 ft) above the surrounding rift valley.[10] It has two craters on either side of the mountain summit,[11] which is formed by a 110-metre (360-foot) high ridge.[12] The floor of the northern crater is covered with lava flows that resemble pahoehoe lavas. Small cones[a] with sizes ranging from 2 metres (6 ft 7 in) to over 10 metres (33 ft) occur in the crater and produce lava flows from their summits and, when they collapse, from their flanks.[5] The southern crater is inactive and sometimes filled with water.[14] White volcanic ash deposits cover the slopes of the volcano,[11] which have large fractures on the western flank.[9] There are parasitic vents on Ol Doinyo Lengai's flanks,[15] such as Kirurum Crater on the western, the Nasira cones on the northern, Dorobo crater on the northeastern, and Oltatwa Crater on the eastern flank.[16]
There are deposits of past debris avalanches around the volcano, especially on its northern flank;[17] one such event has left a scar on the volcano's flanks.[18] Their occurrence may have been influenced by regional fault systems.[19]
Geology
Summarize
Perspective
Ol Doinyo Lengai is part of the Gregory Rift,[1] which is part of the active East African Rift. The East African Rift is a continental rift extending from eastern to southern Africa over a length of 4,000 kilometres (2,500 mi),[20] where there is high heat flow through a thinner crust.[21] In the Gregory Rift, spreading began about 1.2 million years ago[20] and is ongoing at a rate of about 3 millimetres per year (0.12 in/year).[22] The Natron Fault, the western boundary of the Gregory Rift in the area, passes just southwest of the volcano.[23]
The volcano is part of the Ngorongoro volcanic highland, a system of volcanoes that were active from the Miocene to present, and which includes the Ngorongoro and other volcanoes.[20] Over time, volcanic activity shifted northeastward to the present-day Ol Doinyo Lengai.[24] Other volcanoes in the area are Gelai to the northeast[b] and Ketumbeine southeast of Ol Doinyo Lengai; further away are the Olduvai Gorge to the west and Kilimanjaro mountain east of the volcano.[10]
Composition
Most of the volcanic cone is formed by melilite, nephelinite, and phonolite.[c][26] Ol Doinyo Lengai is the only volcano on Earth known to have erupted carbonatitic lavas[d] during historical times,[1] although these rocks make up only a small fraction of the volcano[15] and only occur in the northern crater;[e][27] they only recently appeared on the volcano.[13] The properties of Ol Doinyo Lengai's magmas have been used as an analogue for the conditions on carbon planets; these are planets which are rich in carbon.[21]
Chemical composition:
- The carbonatites contain a groundmass of fluorite and sylvite, while apatite, galena, magnetite, monticellite, sellaite, and sphalerite form accessory components.[15]
- The silicic lavas contain combeite, ijolites, melanite, nepheline, phlogopite, and pyroxene, as well as apatite, garnet, sphene, and wollastonite.[28]
- Xenoliths from the basement have been found and consist of gneiss and other metamorphic rocks,[29] as well as ijolites, pyroxenites, and urtites.[12]
The carbonatite lavas are rapidly chemically modified by rainfall[30] or covered by deposits condensing from fumarolic gases,[31] yielding secondary minerals like calcite, gaylussite, nahcolite, pirssonite, shortite, thermonatrite, and trona,[32] including various chlorides, fluorides,[f] and sulfates.[5] These rocks form crusts on the lava flows and within lava tubes.[13] Weathering on the silicic rocks has yielded zeoliths.[34]
The chemical composition of the erupted rocks is not steady, with an increase of silicic magma emplacement noted after 2007-2008, after an episode of increased spreading in the Gregory Rift.[35] The carbonatitic magmas appear to form through the separation of carbon-rich phases; the original magma is variously interpreted to be either nephelinitic or silicic.[21] The phonolites appear to have a separate origin from the other volcanic rocks.[36] There appear to be two magma reservoirs under the volcano,[37] and its plumbing system is complex, involving regional tectonic structures.[38]
Volcanic gases
Volcanic gas sampled at Ol Doinyo Lengai consists mostly of water vapor and carbon dioxide and originates in the mantle.[39] The volcano is a major source of volcanic carbon dioxide, producing about 80 kilograms per second (11,000 lb/min) of CO
2.[26]
Eruption history
Summarize
Perspective
Radiometric dates obtained by geologists for the start of volcanic eruptions at Ol Doinyo Lengai range from more than 500,000 to 22,000 years ago.[15][40] It formed in two stages, Lengai I consisting of phonolite that forms about 60% of the volume of Ol Doinyo Lengai and crops out in its southern part, and Lengai II formed by nephelinitic rocks;[15][41][12] growth of the volcanic cone was complete about 15,000 years ago,[1] when the Naisiusiu Beds were emplaced in the Olduvai Gorge.[42] The volcano collapsed several times, including once between 850,000 and 135,000 years ago and another time between 50,000 and 10,000 years ago.[17] The oldest natrocarbonatite lavas date to 1,250 years before present.[39] An eruption 3,000-2,500 years before present produced a tephra fallout west of Ol Doinyo Lengai, that is presently being eroded by wind and forming dunes including the Shifting Sands of the Olduvai Gorge.[43] A large eruption deposited the Namorod Ash in the gorge, about 1,250 years ago,[34] and another about 600 years ago formed the so-called "Footprint Tuff".[34] Ol Doinyo Lengai is the only presently active volcano of the Gregory Rift.[10]
Records of eruptions go back to the 1880s.[44][g] The volcano is continually active, but there are seldom observations of its activity.[46] It erupts tephra and lava flows[11] from within the northern crater.[10] During the middle 20th century, the crater was about 200 metres (660 ft) deep; subsequently, lava flows filled it, and by 1998, lava was overflowing its rims.[1] The lava flows issue from cones within the crater and form lava ponds and lakes.[7] Explosive eruptions are less common, having been reported in 1917, 1940, 1966,[h] 1983 and 1993.[39][47] Oversteepened slopes produce landslides,[11] and erosion has cut gullies into volcanic deposits.[48] Steam jets have also been observed.[45]
There is evidence of underground magma intrusions.[22] Satellite observations have shown deformation of the volcano during eruptions,[49] and ground-based observations have identified movement in neighboring fault systems such as the Natron Fault caused by magma originating at Ol Doinyo Lengai.[50]
Recent eruptive period: 1983 and subsequent

After a phase of quiescence,[26] renewed activity commenced in 1983 and continues[11] with several interruptions to this day.[51] During the 1983 eruption, ashfall occurred at tens of kilometers from the volcano.[26] The emission of a lava flow onto the western flank of Ol Doinyo Lengai in 2006 was accompanied by the formation of a pit crater on the summit.[52]
A large explosive eruption began on the 4 September 2007, producing a 3-kilometre (1.9 mi)-high eruption column[53] and a new crater 100 metres (330 ft) deep and 300 metres (980 ft) wide.[54] The explosive activity continued into 2008, when the volcano settled back into the effusion of lava flows;[53] a cinder cone formed in the northern crater during the eruption.[55] Aerosol clouds from the eruption[56] extended over east Africa.[57] The 2007 eruptions forced the evacuation of three villages[58] and disturbed air travel in the touristically important area;[59] livestock fatalities and injuries to people led to requests that the government of Tanzania enact access restrictions to the volcano[60] and to increased awareness of the threat formed by the volcano.[61] Wild animals such as flamingos were also impacted by the eruption.[59] The eruption was preceded in July by seismic activity, which was frequently mistaken for renewed eruptions,[62] and the intrusion of a dyke less than 20 kilometres (12 mi) from Ol Doinyo Lengai.[38]
General appearance of lava flows

Lavas erupted by Ol Doinyo Lengai initially have brown or black colors, but within days[45] to hours become white like snow.[11] The lavas of Ol Doinyo Lengai have temperatures of 540–593 °C (1,004–1,099 °F);[5] they are so cold that during the day they look like mudflows[i] or oil and glow only during the night.[7] They are highly fluid (reaching flow speeds of 1–5 metres per second (3.3–16.4 ft/s),[5] making them the most liquid of all known lavas, and form short (few tens of meters) and thin (few centimeters thick) lava flows.[11] More viscous flows containing silicic rocks have also been observed, for example during the 1993 eruption.[64]
Hazards
Potential threats from Ol Doinyo Lengai eruptions are scarcely established.[65] Threats from eruptions at Ol Doinyo Lengai include lahars, landslides, lava flows, pyroclastic flows, volcanic bombs, volcanic gas, and volcanic ash fall.[66][9] Beginning in 2016, the volcano is being monitored by a seismometer and GNSS stations.[66]
Climate and vegetation
Vegetation in the area consists mostly of grassland, which reaches an elevation of 1,750 metres (5,740 ft) above sea level.[9] Volcanic ash from Ol Doinyo Lengai influences the surrounding landscape, favoring the growth of nutrient-rich plants.[67] Precipitation falls during two wet seasons in March–May and October–December.[9]
Gallery
- Ol Doinyo Lengai erupting in March 2008
- Satellite image (2009) of Ol Doinyo Lengai after an explosive eruption
- Ol Doinyo Lengai in February 2012
- Aerial photo of Oldoinyo Lengai in January 2011
- Image of 1966 eruption
- Crater of Ol Doinyo Lengai in January 2011
See also
Notes
- The Naibor Soito monogenetic volcanic field lies between Gelai and Ol Doinyo Lengai.[25]
- Together they make up more than 90% of the cone.[13]
- Carbonatites are magmas that consist of carbonate compounds.[10] At Ol Doinyo Lengai, they are made up of nyererite (Na
2Ca(CO
3)
2) and gregoryite ((Na
,K
,Ca)
2CO
3).[5] - Silicic lavas mostly issued from the southern crater.[13]
- Eruptions have been recorded in 1880, 1894 (?), 1904, 1913-15, 1917, 1921, 1926, 1940-41, 1954-55, 1958, and 1960.[45]
- 1966 saw explosive eruptions in August and October, which formed a deep crater.[11]
- And have been confused for mud by non-volcanologists.[63]
References
External links
Wikiwand - on
Seamless Wikipedia browsing. On steroids.