Loading AI tools
Mathematical equation involving a matrix-valued function that is singular at the eigenvalue. From Wikipedia, the free encyclopedia
In mathematics, a nonlinear eigenproblem, sometimes nonlinear eigenvalue problem, is a generalization of the (ordinary) eigenvalue problem to equations that depend nonlinearly on the eigenvalue. Specifically, it refers to equations of the form
where is a vector, and is a matrix-valued function of the number . The number is known as the (nonlinear) eigenvalue, the vector as the (nonlinear) eigenvector, and as the eigenpair. The matrix is singular at an eigenvalue .
In the discipline of numerical linear algebra the following definition is typically used.[1][2][3][4]
Let , and let be a function that maps scalars to matrices. A scalar is called an eigenvalue, and a nonzero vector is called a right eigevector if . Moreover, a nonzero vector is called a left eigevector if , where the superscript denotes the Hermitian transpose. The definition of the eigenvalue is equivalent to , where denotes the determinant.[1]
The function is usually required to be a holomorphic function of (in some domain ).
In general, could be a linear map, but most commonly it is a finite-dimensional, usually square, matrix.
Definition: The problem is said to be regular if there exists a such that . Otherwise it is said to be singular.[1][4]
Definition: An eigenvalue is said to have algebraic multiplicity if is the smallest integer such that the th derivative of with respect to , in is nonzero. In formulas that but for .[1][4]
Definition: The geometric multiplicity of an eigenvalue is the dimension of the nullspace of .[1][4]
The following examples are special cases of the nonlinear eigenproblem.
Definition: Let be an eigenpair. A tuple of vectors is called a Jordan chain iffor , where denotes the th derivative of with respect to and evaluated in . The vectors are called generalized eigenvectors, is called the length of the Jordan chain, and the maximal length a Jordan chain starting with is called the rank of .[1][4]
Theorem:[1] A tuple of vectors is a Jordan chain if and only if the function has a root in and the root is of multiplicity at least for , where the vector valued function is defined as
Eigenvector nonlinearities is a related, but different, form of nonlinearity that is sometimes studied. In this case the function maps vectors to matrices, or sometimes hermitian matrices to hermitian matrices.[13][14]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.