Monomial group

From Wikipedia, the free encyclopedia

In mathematics, in the area of algebra studying the character theory of finite groups, an M-group or monomial group is a finite group whose complex irreducible characters are all monomial, that is, induced from characters of degree 1.[1]

In this section only finite groups are considered. A monomial group is solvable.[2] Every supersolvable group[3] and every solvable A-group[4] is a monomial group. Factor groups of monomial groups are monomial, but subgroups need not be, since every finite solvable group can be embedded in a monomial group.[5]

The symmetric group is an example of a monomial group that is neither supersolvable nor an A-group. The special linear group is the smallest finite group that is not monomial: since the abelianization of this group has order three, its irreducible characters of degree two are not monomial.

Notes

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.