For example, given a solution u to a partial differential equation on a domain Ω with boundary ∂Ω, it is said to satisfy a mixed boundary condition if, consisting ∂Ω of two disjoint parts, Γ 1 and Γ 2, such that ∂Ω=Γ 1∪Γ 2, u verifies the following equations:
and
where u 0 and g are given functions defined on those portions of the boundary.[1]
The mixed boundary condition differs from the Robin boundary condition in that the latter requires a linear combination, possibly with pointwise variable coefficients, of the Dirichlet and the Neumann boundary value conditions to be satisfied on the whole boundary of a given domain.
M. Wirtinger, dans une conversation privée, a attiré mon attention sur le probleme suivant: déterminer une fonction u vérifiant l'équation de Laplace dans un certain domaine (D) étant donné, sur une partie (S) de la frontière, les valeurs périphériques de la fonction demandée et, sur le reste (S′) de la frontière du domaine considéré, celles de la dérivée suivant la normale. Je me propose de faire connaitre une solution très générale de cet intéressant problème.[2]
The first boundary value problem satisfying a mixed boundary condition was solved by Stanisław Zaremba for the Laplace equation: according to himself, it was Wilhelm Wirtinger who suggested him to study this problem.[3]
(English translation) "Mr. Wirtinger, during a private conversation, has drawn to my attention the following problem: to determine one function u satisfying Laplace's equation on a certain domain (D) being given, on a part (S) of its boundary, the peripheral values of the sought function and, on the remaining part (S′) of the considered domain, the ones of its derivative along the normal. I aim to make known a very general solution of this interesting problem."
Guru, Bhag S.; Hızıroğlu, Hüseyin R. (2004), Electromagnetic field theory fundamentals (2nded.), Cambridge, UK – New York: Cambridge University Press, p.593, ISBN0-521-83016-8.