Top Qs
Timeline
Chat
Perspective

Mirror descent

Concept in mathematics From Wikipedia, the free encyclopedia

Remove ads

In mathematics, mirror descent is an iterative optimization algorithm for finding a local minimum of a differentiable function.

It generalizes algorithms such as gradient descent and multiplicative weights.

History

Mirror descent was originally proposed by Nemirovski and Yudin in 1983.[1]

Motivation

Summarize
Perspective

In gradient descent with the sequence of learning rates applied to a differentiable function , one starts with a guess for a local minimum of and considers the sequence such that

This can be reformulated by noting that

In other words, minimizes the first-order approximation to at with added proximity term .

This squared Euclidean distance term is a particular example of a Bregman distance. Using other Bregman distances will yield other algorithms such as Hedge which may be more suited to optimization over particular geometries.[2][3]

Remove ads

Formulation

We are given convex function to optimize over a convex set , and given some norm on .

We are also given differentiable convex function , -strongly convex with respect to the given norm. This is called the distance-generating function, and its gradient is known as the mirror map.

Starting from initial , in each iteration of Mirror Descent:

  • Map to the dual space:
  • Update in the dual space using a gradient step:
  • Map back to the primal space:
  • Project back to the feasible region : , where is the Bregman divergence.
Remove ads

Extensions

Mirror descent in the online optimization setting is known as Online Mirror Descent (OMD).[4]

See also

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.

Remove ads