Top Qs
Timeline
Chat
Perspective
Mirror descent
Concept in mathematics From Wikipedia, the free encyclopedia
Remove ads
In mathematics, mirror descent is an iterative optimization algorithm for finding a local minimum of a differentiable function.
It generalizes algorithms such as gradient descent and multiplicative weights.
History
Mirror descent was originally proposed by Nemirovski and Yudin in 1983.[1]
Motivation
Summarize
Perspective
In gradient descent with the sequence of learning rates applied to a differentiable function , one starts with a guess for a local minimum of and considers the sequence such that
This can be reformulated by noting that
In other words, minimizes the first-order approximation to at with added proximity term .
This squared Euclidean distance term is a particular example of a Bregman distance. Using other Bregman distances will yield other algorithms such as Hedge which may be more suited to optimization over particular geometries.[2][3]
Remove ads
Formulation
We are given convex function to optimize over a convex set , and given some norm on .
We are also given differentiable convex function , -strongly convex with respect to the given norm. This is called the distance-generating function, and its gradient is known as the mirror map.
Starting from initial , in each iteration of Mirror Descent:
- Map to the dual space:
- Update in the dual space using a gradient step:
- Map back to the primal space:
- Project back to the feasible region : , where is the Bregman divergence.
Remove ads
Extensions
Mirror descent in the online optimization setting is known as Online Mirror Descent (OMD).[4]
See also
References
Wikiwand - on
Seamless Wikipedia browsing. On steroids.
Remove ads