Loading AI tools
From Wikipedia, the free encyclopedia
MicrOmega-IR is an infrared hyperspectral microscope that is part of the science payload on board the European Rosalind Franklin rover,[2] tasked to search for biosignatures on Mars. The rover is planned to be launched not earlier than 2028. MicrOmega-IR will analyse in situ the powder material derived from crushed samples collected by the rover's core drill.[3][4]
Operator | European Space Agency |
---|---|
Manufacturer | Institut d'Astrophysique Spatiale, of the CNRS |
Instrument type | Infrared hyperspectral microscope |
Function | Subsurface composition |
Mission duration | ≥ 7 months[1] |
Website | ExoMars Rover Instrument Suite |
Properties | |
Mass | ≈2 kg |
Host spacecraft | |
Spacecraft | Rosalind Franklin rover |
Operator | European Space Agency |
Launch date | NET 2028 |
The MicrOmega mnemonic is derived from its French name Micro observatoire pour la mineralogie, l'eau, les glaces et l'activité;[1] IR stands for infrared. It was developed by France's Institut d'Astrophysique Spatiale at the CNRS. France has also flown MicrOmega on other missions such as the 2011 Fobos-Grunt and the Hayabusa2 MASCOT mobile lander currently exploring asteroid Ryugu.[5] France is also developing a variant called MacrOmega Near-IR Spectrometer for the Martian Moons Exploration (MMX) lander, a Japanese sample-return mission to Mars' moon Phobos.[6]
The Principal Investigator of the MicrOmega-IR for the Rosalind Franklin rover is Jean-Pierre Bibring, a French astronomer and planetary scientist at the Institut d'Astrophysique Spatiale. Co-PIs are astrobiologists Frances Westall and Nicolas Thomas.[7]
MicrOmega was developed by a consortium including:[8]
MicrOmega-IR | Parameter/units [9] |
---|---|
Type | Infrared hyperspectral microscope |
Manufacturer | Institut d'Astrophysique Spatiale, of the CNRS |
Spectral range | 0.9–4 μm [10] |
Spectral sampling | 20/cm from 0.95 μm to 3.65 μm |
Imaging resolution | 20 μm2/pixel |
Field of view | 5 × 5 mm2 |
Mass | ≈ 2 kilograms (4.4 lb) |
MicrOmega-IR is a visible and infrared hyperspectral microscope that is designed to characterize the texture and composition of crushed samples presented to the instrument.[9] Its objective is to study mineral grain assemblages in detail to try to unravel their geological origin, structure and composition, including potential organics.[9] These data will be vital for interpreting past and present geological processes and environments on Mars. Because MicrOmega-IR is an imaging instrument, it can also be used to identify grains that are particularly interesting, and assign them as targets for Raman and MOMA observations.[9]
It is composed of 2 microscopes: MicrOmega/VIS has a spatial sampling of approximately 4 μm, working in 4 colors in the visible range. The other one is the MicrOmega/NIR hyperspectral microscope working in the spectral range 0.95 μm - 3.65 μm with a spatial sampling of 20 μm per pixel.[10] Its main supporting components include:[11]
The IR instrument uses a HgCdTe (Mercury-Cadmium-Telluride) matrix detector, the Sofradir Mars SW 320 x 256 pixels.[12]
Examples of materials for identification, if present:[13]
Seamless Wikipedia browsing. On steroids.
Every time you click a link to Wikipedia, Wiktionary or Wikiquote in your browser's search results, it will show the modern Wikiwand interface.
Wikiwand extension is a five stars, simple, with minimum permission required to keep your browsing private, safe and transparent.