Methyl acrylate

Chemical compound From Wikipedia, the free encyclopedia

Methyl acrylate

Methyl acrylate is an organic compound, more accurately the methyl ester of acrylic acid. It is a colourless liquid with a characteristic acrid odor. It is mainly produced to make acrylate fiber, which is used to weave synthetic carpets.[6] It is also a reagent in the synthesis of various pharmaceutical intermediates. Owing to the tendency of methyl acrylate to polymerize, samples typically contain an inhibitor such as hydroquinone.

Quick Facts Names, Identifiers ...
Methyl acrylate
Thumb
Thumb
Names
Preferred IUPAC name
Methyl prop-2-enoate[1]
Other names
Methyl acrylate
Methyl propenoate
Methoxycarbonylethylene
Curithane 103[1]
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.002.274
KEGG
UNII
  • InChI=1S/C4H6O2/c1-3-4(5)6-2/h3H,1H2,2H3 Y
    Key: BAPJBEWLBFYGME-UHFFFAOYSA-N Y
  • C=CC(OC)=O
Properties
C4H6O2
Molar mass 86.090 g·mol−1
Appearance Colorless liquid
Odor Acrid[2]
Density 0.95 g/cm3[3]
Melting point −74 °C (−101 °F; 199 K)[3]
Boiling point 80 °C (176 °F; 353 K)[3]
5 g/100 mL
Vapor pressure 65 mmHg (20°C)[2]
Viscosity
  • 0.391 mPa·s at 35 °C[4]
  • 0.333 mPa·s at 45 °C[4]
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Harmful (Xn); Highly flammable (F+)
Flash point −3 °C (27 °F; 270 K)[3]
Explosive limits 2.8–25%[2]
Lethal dose or concentration (LD, LC):
3575 ppm (mouse)
1350 ppm (rat, 4 hr)
1000 ppm (rat, 4 hr)
2522 ppm (rabbit, 1 hr)[5]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 10 ppm (35 mg/m3) [skin][2]
REL (Recommended)
TWA 10 ppm (35 mg/m3) [skin][2]
IDLH (Immediate danger)
250 ppm[2]
Safety data sheet (SDS) Oxford MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Close

Production

Summarize
Perspective

The standard industrial reaction for producing methyl acrylate is esterification of acrylic acid with methanol under acid catalysis (sulfuric acid, p-toluenesulfonic acid or acidic ion exchangers.[7]). The transesterification is facilitated because methanol and methyl acrylate form a low boiling azeotrope (boiling point 62–63 °C).[8]

The patent literature[9] describes a one-pot route involving vapor-phase oxidation of propene or 2-propenal with oxygen in the presence of methanol.

Other methods

Methyl acrylate can be prepared by debromination of methyl 2,3-dibromopropanoate with zinc.[10] Methyl acrylate is formed in good yield on pyrolysis of methyl lactate in the presence of ethenone (ketene).[11] Methyl lactate is a renewable "green chemical". Another patent[12] describes the dehydration of methyl lactate over zeolites.

The nickel tetracarbonyl-catalyzed hydrocarboxylation of acetylene with carbon monoxide in the presence of methanol also yields methyl acrylate.[13] The reaction of methyl formate with acetylene in the presence of transition metal catalysts also leads to methyl acrylate.[14] Both, the alcoholysis of propiolactone with methanol as well as the methanolysis of acrylonitrile via intermediately formed acrylamide sulfate[15] are also proven but obsolete processes.

Use

Summarize
Perspective

Methyl acrylate is after butyl acrylate and ethyl acrylate the third most important acrylic ester with a worldwide annual production of about 200,000 tons in 2007.[16] Poly(methyl acrylate) is a tacky material near room temperature, and as such it is not particularly useful as a structural material. Commonly, methyl acrylate (and other acrylate esters) are copolymerized with other alkenes to give useful engineering plastics.[17] A variety of vinyl monomers are used, including styrene and other acrylates.[18] The resulting copolymers give acrylic paints that are harder and more brittle than those with the homologous acrylates. Copolymerizing methyl acrylate with acrylonitrile improves their melt processability to fibers, which could be used as precursors for carbon fibers.[19] Methyl acrylate is the precursor to fibers that are woven to make carpets.

Amino derivatives

Methyl acrylate reacts catalysed by Lewis bases in a Michael addition with amines in high yields to β-alanine derivatives which provide amphoteric surfactants when long-chain amines are used and the ester function is hydrolysed subsequently.

Acrylates are also used in the preparation of poly(amidoamine) (PAMAM) dendrimers typically by Michael addition with a primary amine.

Thumb

Methyl acrylate is used for the preparation of 2-dimethylaminoethyl acrylate by transesterification with dimethylaminoethanol in significant quantities of over 50,000 tons / year.[20]

Reactions

Methyl acrylate is a classic Michael acceptor, which means that it adds nucleophiles at its terminus. For example, in the presence of a base catalyst, it adds hydrogen sulfide to give the thioether:[21]

2 CH2CHCO2CH3 + H2S → S(CH2CH2CO2CH3)2

It is also a good dienophile.

Safety

It is an acute toxin with an LD50 (rats, oral) of 300 mg/kg and a TLV of 10 ppm.

References

Loading related searches...

Wikiwand - on

Seamless Wikipedia browsing. On steroids.